Your browser doesn't support javascript.
loading
Weathering-independent differentiation of microplastic polymers by reflectance IR spectrometry and pattern recognition.
Ferreiro, Borja; Andrade, Jose M; Paz-Quintáns, Carlota; Fernández-González, Verónica; López-Mahía, Purificación; Muniategui, Soledad.
Afiliación
  • Ferreiro B; Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Universidade da Coruña, 15071 A Coruña, Spain.
  • Andrade JM; Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Universidade da Coruña, 15071 A Coruña, Spain. Electronic address: andrade@udc.es.
  • Paz-Quintáns C; Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Universidade da Coruña, 15071 A Coruña, Spain.
  • Fernández-González V; Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Universidade da Coruña, 15071 A Coruña, Spain.
  • López-Mahía P; Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Universidade da Coruña, 15071 A Coruña, Spain.
  • Muniategui S; Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Universidade da Coruña, 15071 A Coruña, Spain.
Mar Pollut Bull ; 181: 113897, 2022 Aug.
Article en En | MEDLINE | ID: mdl-35809473
The presence and effects of microplastics in the environment is being continuously studied, so the need for a reliable approach to ascertain the polymer/s constituting them has increased. To characterize them, infrared (IR) spectrometry is commonly applied, either reflectance or attenuated total reflectance (ATR). A common problem when considering field samples is their weathering and biofouling, which modify their spectra. Hence, relying on spectral matching between the unknown spectrum and spectral databases is largely defective. In this paper, the use of IR spectra combined with pattern recognition techniques (principal components analysis, classification and regression trees and support vector classification) is explored first time to identify a collection of typical polymers regardless of their ageing. Results show that it is possible to identify them using a reduced suite of spectral wavenumbers with coherent chemical meaning. The models were validated using two datasets containing artificially weathered polymers and field samples.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Plásticos / Microplásticos Tipo de estudio: Prognostic_studies Idioma: En Revista: Mar Pollut Bull Año: 2022 Tipo del documento: Article País de afiliación: España Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Plásticos / Microplásticos Tipo de estudio: Prognostic_studies Idioma: En Revista: Mar Pollut Bull Año: 2022 Tipo del documento: Article País de afiliación: España Pais de publicación: Reino Unido