Your browser doesn't support javascript.
loading
Plant-exclusive domain of trans-editing enzyme ProXp-ala confers dimerization and enhanced tRNA binding.
Byun, Jun-Kyu; Vu, John A; He, Siou-Luan; Jang, Jyan-Chyun; Musier-Forsyth, Karin.
Afiliación
  • Byun JK; Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA; Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA.
  • Vu JA; Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA; Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA.
  • He SL; Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA; Department of Horticulture and Crop Science and Center for Applied Plant Sciences, The Ohio State University, Columbus, Ohio, USA.
  • Jang JC; Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA; Department of Horticulture and Crop Science and Center for Applied Plant Sciences, The Ohio State University, Columbus, Ohio, USA. Electronic address: jang.40@osu.edu.
  • Musier-Forsyth K; Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA; Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA. Electronic address: musier-forsyth.1@osu.edu.
J Biol Chem ; 298(9): 102255, 2022 09.
Article en En | MEDLINE | ID: mdl-35835222
ABSTRACT
Faithful translation of the genetic code is critical for the viability of all living organisms. The trans-editing enzyme ProXp-ala prevents Pro to Ala mutations during translation by hydrolyzing misacylated Ala-tRNAPro that has been synthesized by prolyl-tRNA synthetase. Plant ProXp-ala sequences contain a conserved C-terminal domain (CTD) that is absent in other organisms; the origin, structure, and function of this extra domain are unknown. To characterize the plant-specific CTD, we performed bioinformatics and computational analyses that provided a model consistent with a conserved α-helical structure. We also expressed and purified wildtype Arabidopsis thaliana (At) ProXp-ala in Escherichia coli, as well as variants lacking the CTD or containing only the CTD. Circular dichroism spectroscopy confirmed a loss of α-helical signal intensity upon CTD truncation. Size-exclusion chromatography with multiangle laser-light scattering revealed that wildtype At ProXp-ala was primarily dimeric and CTD truncation abolished dimerization in vitro. Furthermore, bimolecular fluorescence complementation assays in At protoplasts support a role for the CTD in homodimerization in vivo. The deacylation rate of Ala-tRNAPro by At ProXp-ala was also significantly reduced in the absence of the CTD, and kinetic assays indicated that the reduction in activity is primarily due to a tRNA binding defect. Overall, these results broaden our understanding of eukaryotic translational fidelity in the plant kingdom. Our study reveals that the plant-specific CTD plays a significant role in substrate binding and canonical editing function. Through its ability to facilitate protein-protein interactions, we propose the CTD may also provide expanded functional potential for trans-editing enzymes in plants.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas de Plantas / Biosíntesis de Proteínas / ARN de Transferencia / Prolina / Arabidopsis / Alanina / Multimerización de Proteína / Aminoacil-ARNt Sintetasas Idioma: En Revista: J Biol Chem Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas de Plantas / Biosíntesis de Proteínas / ARN de Transferencia / Prolina / Arabidopsis / Alanina / Multimerización de Proteína / Aminoacil-ARNt Sintetasas Idioma: En Revista: J Biol Chem Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos