Your browser doesn't support javascript.
loading
Continuum breakdown in compressible mixing layers.
Mohan, Vishnu; Sameen, A; Srinivasan, Balaji; Girimaji, Sharath S.
Afiliación
  • Mohan V; Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai 600036, India.
  • Sameen A; Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai 600036, India.
  • Srinivasan B; Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India.
  • Girimaji SS; Department of Ocean Engineering, Texas A&M University, College Station, Texas 77843, USA.
Phys Rev E ; 105(6-2): 065102, 2022 Jun.
Article en En | MEDLINE | ID: mdl-35854546
ABSTRACT
Gas-kinetic simulations of rarefied and compressible mixing layers are performed to characterize continuum breakdown and the effect on the Kelvin-Helmholtz instability. The unified gas-kinetic scheme (UGKS) is used to perform the simulations at different Mach and Knudsen numbers. The UGKS stress tensor and heat-flux vector fields are compared against those given by the Navier-Stokes-Fourier constitutive equations. The most significant difference is seen in the shear stress and transverse heat flux. The study demonstrates the existence of two distinct continuum breakdown regimes, one at low and the other at high convective Mach numbers. Overall, at low convective Mach numbers, the deviation from continuum stress and heat flux appears to scale exclusively with the micro-macro length scale ratio given by the Knudsen number. On the other hand, at high convective Mach numbers, the deviation depends on the global micro-macro timescale ratio given by the product of Mach and Knudsen numbers. We further demonstrate that, unlike shear stresses and transverse heat flux, the deviations in normal stresses and the streamwise heat flux depend separately on Knudsen and Mach numbers. A local parameter called the gradient Knudsen number is proposed to characterize the rarefaction effects on the local momentum and thermal transport. Noncontinuum aspects of gas-kinetic stress-tensor and heat-flux behavior that Grad's 13-moment equation model reasonably captures are identified.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Rev E Año: 2022 Tipo del documento: Article País de afiliación: India

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Rev E Año: 2022 Tipo del documento: Article País de afiliación: India