Your browser doesn't support javascript.
loading
Reconciling Assumptions in Bottom-Up and Top-Down Approaches for Estimating Aerosol Emission Rates From Wildland Fires Using Observations From FIREX-AQ.
Wiggins, E B; Anderson, B E; Brown, M D; Campuzano-Jost, P; Chen, G; Crawford, J; Crosbie, E C; Dibb, J; DiGangi, J P; Diskin, G S; Fenn, M; Gallo, F; Gargulinski, E M; Guo, H; Hair, J W; Halliday, H S; Ichoku, C; Jimenez, J L; Jordan, C E; Katich, J M; Nowak, J B; Perring, A E; Robinson, C E; Sanchez, K J; Schueneman, M; Schwarz, J P; Shingler, T J; Shook, M A; Soja, A J; Stockwell, C E; Thornhill, K L; Travis, K R; Warneke, C; Winstead, E L; Ziemba, L D; Moore, R H.
Afiliación
  • Wiggins EB; NASA Postdoctoral Program Universities Space Research Association Columbia MD USA.
  • Anderson BE; NASA Langley Research Center Hampton VA USA.
  • Brown MD; NASA Langley Research Center Hampton VA USA.
  • Campuzano-Jost P; NASA Langley Research Center Hampton VA USA.
  • Chen G; Science Systems and Applications, Inc. Hampton VA USA.
  • Crawford J; CIRES University of Colorado Boulder Boulder CO USA.
  • Crosbie EC; NASA Langley Research Center Hampton VA USA.
  • Dibb J; NASA Langley Research Center Hampton VA USA.
  • DiGangi JP; NASA Langley Research Center Hampton VA USA.
  • Diskin GS; Science Systems and Applications, Inc. Hampton VA USA.
  • Fenn M; Earth Systems Research Center University of New Hampshire Durham NH USA.
  • Gallo F; NASA Langley Research Center Hampton VA USA.
  • Gargulinski EM; NASA Langley Research Center Hampton VA USA.
  • Guo H; NASA Langley Research Center Hampton VA USA.
  • Hair JW; Science Systems and Applications, Inc. Hampton VA USA.
  • Halliday HS; NASA Postdoctoral Program Universities Space Research Association Columbia MD USA.
  • Ichoku C; NASA Langley Research Center Hampton VA USA.
  • Jimenez JL; National Institute of Aerospace Hampton VA USA.
  • Jordan CE; CIRES University of Colorado Boulder Boulder CO USA.
  • Katich JM; NASA Langley Research Center Hampton VA USA.
  • Nowak JB; Environmental Protection Agency Research Triangle Durham NC USA.
  • Perring AE; College of Arts and Sciences Howard University Washington DC USA.
  • Robinson CE; CIRES University of Colorado Boulder Boulder CO USA.
  • Sanchez KJ; NASA Langley Research Center Hampton VA USA.
  • Schueneman M; National Institute of Aerospace Hampton VA USA.
  • Schwarz JP; CIRES University of Colorado Boulder Boulder CO USA.
  • Shingler TJ; NOAA Chemical Science Laboratory Boulder CO USA.
  • Shook MA; NASA Langley Research Center Hampton VA USA.
  • Soja AJ; Department of Chemistry Colgate University Hamilton NY USA.
  • Stockwell CE; NASA Langley Research Center Hampton VA USA.
  • Thornhill KL; Science Systems and Applications, Inc. Hampton VA USA.
  • Travis KR; NASA Postdoctoral Program Universities Space Research Association Columbia MD USA.
  • Warneke C; NASA Langley Research Center Hampton VA USA.
  • Winstead EL; CIRES University of Colorado Boulder Boulder CO USA.
  • Ziemba LD; NOAA Chemical Science Laboratory Boulder CO USA.
  • Moore RH; NASA Langley Research Center Hampton VA USA.
J Geophys Res Atmos ; 126(24): e2021JD035692, 2021 Dec 27.
Article en En | MEDLINE | ID: mdl-35865864
ABSTRACT
Accurate fire emissions inventories are crucial to predict the impacts of wildland fires on air quality and atmospheric composition. Two traditional approaches are widely used to calculate fire emissions a satellite-based top-down approach and a fuels-based bottom-up approach. However, these methods often considerably disagree on the amount of particulate mass emitted from fires. Previously available observational datasets tended to be sparse, and lacked the statistics needed to resolve these methodological discrepancies. Here, we leverage the extensive and comprehensive airborne in situ and remote sensing measurements of smoke plumes from the recent Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) campaign to statistically assess the skill of the two traditional approaches. We use detailed campaign observations to calculate and compare emission rates at an exceptionally high-resolution using three separate approaches top-down, bottom-up, and a novel approach based entirely on integrated airborne in situ measurements. We then compute the daily average of these high-resolution estimates and compare with estimates from lower resolution, global top-down and bottom-up inventories. We uncover strong, linear relationships between all of the high-resolution emission rate estimates in aggregate, however no single approach is capable of capturing the emission characteristics of every fire. Global inventory emission rate estimates exhibited weaker correlations with the high-resolution approaches and displayed evidence of systematic bias. The disparity between the low-resolution global inventories and the high-resolution approaches is likely caused by high levels of uncertainty in essential variables used in bottom-up inventories and imperfect assumptions in top-down inventories.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: J Geophys Res Atmos Año: 2021 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: J Geophys Res Atmos Año: 2021 Tipo del documento: Article
...