Your browser doesn't support javascript.
loading
Upgrading Land-Cover and Vegetation Seasonality in the ECMWF Coupled System: Verification With FLUXNET Sites, METEOSAT Satellite Land Surface Temperatures, and ERA5 Atmospheric Reanalysis.
Nogueira, Miguel; Boussetta, Souhail; Balsamo, Gianpaolo; Albergel, Clément; Trigo, Isabel F; Johannsen, Frederico; Miralles, Diego G; Dutra, Emanuel.
Afiliación
  • Nogueira M; Instituto Dom Luiz, IDL Faculty of Sciences University of Lisbon Lisbon Portugal.
  • Boussetta S; ECMWF Reading UK.
  • Balsamo G; ECMWF Reading UK.
  • Albergel C; European Space Agency Climate Office ECSAT Didcot UK.
  • Trigo IF; Instituto Dom Luiz, IDL Faculty of Sciences University of Lisbon Lisbon Portugal.
  • Johannsen F; Instituto Português do Mar e da Atmosfera Lisbon Portugal.
  • Miralles DG; Instituto Dom Luiz, IDL Faculty of Sciences University of Lisbon Lisbon Portugal.
  • Dutra E; Hydro-Climate Extremes Lab (H-CEL)-Ghent University Ghent Belgium.
J Geophys Res Atmos ; 126(15): e2020JD034163, 2021 Aug 16.
Article en En | MEDLINE | ID: mdl-35866004
ABSTRACT
In this study, we show that limitations in the representation of land cover and vegetation seasonality in the European Centre for Medium-Range Weather Forecasting (ECMWF) model are partially responsible for large biases (up to ∼10°C, either positive or negative depending on the region) on the simulated daily maximum land surface temperature (LST) with respect to satellite Earth Observations (EOs) products from the Land Surface Analysis Satellite Application Facility. The error patterns were coherent in offline land-surface and coupled land-atmosphere simulations, and in ECMWF's latest generation reanalysis (ERA5). Subsequently, we updated the ECMWF model's land cover characterization leveraging on state-of-the-art EOs-the European Space Agency Climate Change Initiative land cover data set and the Copernicus Global Land Services leaf area index. Additionally, we tested a clumping parameterization, introducing seasonality to the effective low vegetation coverage. The updates reduced the overall daily maximum LST bias and unbiased root-mean-squared errors. In contrast, the implemented updates had a neutral impact on daily minimum LST. Our results also highlighted the complex regional heterogeneities in the atmospheric sensitivity to land cover and vegetation changes, particularly with issues emerging over eastern Brazil and northeastern Asia. These issues called for a re-calibration of model parameters (e.g., minimum stomatal resistance, roughness length, rooting depth), along with a revision of several model assumptions (e.g., snow shading by high vegetation).

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Geophys Res Atmos Año: 2021 Tipo del documento: Article Pais de publicación: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Geophys Res Atmos Año: 2021 Tipo del documento: Article Pais de publicación: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA