Your browser doesn't support javascript.
loading
Chitosan-modified Phellinus igniarius polysaccharide PLGA nanoparticles ameliorated inflammatory bowel disease.
Bai, Xinxin; Feng, Zian; Peng, Song; Zhu, Tianyu; Jiao, Lina; Mao, Ningning; Gu, Pengfei; Liu, Zhenguang; Yang, Yang; Wang, Deyun.
Afiliación
  • Bai X; Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 2100
  • Feng Z; Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 2100
  • Peng S; Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 2100
  • Zhu T; Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 2100
  • Jiao L; Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 2100
  • Mao N; Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 2100
  • Gu P; Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 2100
  • Liu Z; Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 2100
  • Yang Y; Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 2100
  • Wang D; Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 2100
Biomater Adv ; 139: 213002, 2022 Aug.
Article en En | MEDLINE | ID: mdl-35882149
ABSTRACT
In many clinical studies, prebiotics have been used as adjuvant therapy for inflammatory bowel disease (IBD). Phellinus igniarius polysaccharide (PIP) possesses great anti-inflammatory and prebiotic activities. Herein, we developed an orally deliverable PIP-loaded chitosan-modified PLGA nanomedicine (CS-PIPP) to investigate its anti-inflammatory effect in vitro and in vivo. Dextran sodium sulfate (DSS)-induced colitis model was established to evaluate the preventive effect of CS-PIPP on IBD. This study characterized that CS-PIPP had a size of 288.7 ± 5.49 nm, positive zeta potential, and showed good stability over four weeks. The in-vitro study suggested that CS-PIPP had enhanced phagocytosis by macrophages, which could further significantly inhibit M1-like macrophages phenotype and regulate lipopolysaccharide (LPS)-induced inflammatory cytokines. The in-vivo study revealed that CS-PIPP prominently prevented intestinal inflammatory damage and protected the integrity of the intestinal barrier. Moreover, CS-PIPP increased the contents of short-chain fatty acids (SCFAs) and positively regulated the gut microbiota. Specifically, CS-PIPP reduced enteropathogenic microorganisms while increasing the beneficial microbiota, including Lactobacillus and Akkermansia, which revealed the potential of CS-PIPP as prebiotics. Generally, CS-PIPP promoted the anti-inflammatory effect of PIP, so it could be regarded as a novel and potent nanoformulation to treat IBD.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Enfermedades Inflamatorias del Intestino / Quitosano / Nanopartículas Límite: Humans Idioma: En Revista: Biomater Adv Año: 2022 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Enfermedades Inflamatorias del Intestino / Quitosano / Nanopartículas Límite: Humans Idioma: En Revista: Biomater Adv Año: 2022 Tipo del documento: Article