Your browser doesn't support javascript.
loading
The Molecular Mechanism of Polyphenols with Anti-Aging Activity in Aged Human Dermal Fibroblasts.
Lee, Joo Hwa; Park, Jooho; Shin, Dong Wook.
Afiliación
  • Lee JH; College of Biomedical and Health Science, Konkuk University, Chungju 27478, Korea.
  • Park J; Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea.
  • Shin DW; College of Biomedical and Health Science, Konkuk University, Chungju 27478, Korea.
Molecules ; 27(14)2022 Jul 07.
Article en En | MEDLINE | ID: mdl-35889225
ABSTRACT
Skin is the largest organ in the body comprised of three different layers including the epidermis, dermis, and hypodermis. The dermis is mainly composed of dermal fibroblasts and extracellular matrix (ECM), such as collagen and elastin, which are strongly related to skin elasticity and firmness. Skin is continuously exposed to different kinds of environmental stimuli. For example, ultraviolet (UV) radiation, air pollutants, or smoking aggravates skin aging. These external stimuli accelerate the aging process by reactive oxygen species (ROS)-mediated signaling pathways and even cause aging-related diseases. Skin aging is characterized by elasticity loss, wrinkle formation, a reduced dermal-epidermal junction, and delayed wound healing. Thus, many studies have shown that natural polyphenol compounds can delay the aging process by regulating age-related signaling pathways in aged dermal fibroblasts. This review first highlights the relationship between aging and its related molecular mechanisms. Then, we discuss the function and underlying mechanism of various polyphenols for improving skin aging. This study may provide essential insights for developing functional cosmetics and future clinical applications.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Envejecimiento de la Piel Límite: Aged / Humans Idioma: En Revista: Molecules Asunto de la revista: BIOLOGIA Año: 2022 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Envejecimiento de la Piel Límite: Aged / Humans Idioma: En Revista: Molecules Asunto de la revista: BIOLOGIA Año: 2022 Tipo del documento: Article