Guanylyl Cyclase-B Dependent Bone Formation in Mice is Associated with Youth, Increased Osteoblasts, and Decreased Osteoclasts.
Calcif Tissue Int
; 111(5): 506-518, 2022 Nov.
Article
en En
| MEDLINE
| ID: mdl-35947145
C-type natriuretic peptide (CNP) activation of guanylyl cyclase-B (GC-B) catalyzes the synthesis of cGMP in chondrocytes and osteoblasts. Elevated cGMP stimulates long bone growth, and inactivating mutations in CNP or GC-B reduce cGMP, which causes dwarfism. GC-B7E/7E mice that express a GC-B mutant that cannot be inactivated by dephosphorylation exhibit increased CNP-dependent GC-B activity, which increases bone length, as well as bone mass and strength. Importantly, how GC-B increases bone mass is not known. Here, we injected 12-week-old, wild type mice once daily for 28 days with or without BMN-111 (Vosoritide), a proteolytically resistant CNP analog. We found that BMN-111 treated mice had elevated levels of osteocalcin and collagen 1 C-terminal telopeptide (CTX) as well as increased osteoblasts and osteoclasts. In BMN-111 injected mice, tibial mRNAs for Rank ligand and osteoprotegrin were increased and decreased, respectively, whereas sclerostin mRNA was elevated 400-fold, consistent with increased osteoclast activity and decreased osteoblast activity. Mineral apposition rates and trabecular bone mass were not elevated in response to BMN-111. Because 9-week-old male GC-B7E/7E mice have increased bone mass but do not exhibit increased mineral apposition rates, we examined 4-week-old male GC-B7E/7E mice and found that these animals had increased serum osteocalcin, but not CTX. Importantly, tibias from these mice had 37% more osteoblasts, 26% fewer osteoclasts as well as 36% and 40% higher mineral apposition and bone formation rates, respectively. We conclude that GC-B-dependent bone formation is coupled to an early juvenile process that requires both increased osteoblasts and decreased osteoclasts.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Osteoclastos
/
Péptido Natriurético Tipo-C
Tipo de estudio:
Risk_factors_studies
Límite:
Animals
Idioma:
En
Revista:
Calcif Tissue Int
Año:
2022
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Estados Unidos