Your browser doesn't support javascript.
loading
Optically Induced Anisotropy in Time-Resolved Scattering: Imaging Molecular-Scale Structure and Dynamics in Disordered Media with Experiment and Theory.
Montoya-Castillo, Andrés; Chen, Michael S; Raj, Sumana L; Jung, Kenneth A; Kjaer, Kasper S; Morawietz, Tobias; Gaffney, Kelly J; van Driel, Tim B; Markland, Thomas E.
Afiliación
  • Montoya-Castillo A; Department of Chemistry, University of Colorado, Boulder, Boulder, Colorado 80309, USA.
  • Chen MS; Department of Chemistry, Stanford University, Stanford, California 94305, USA.
  • Raj SL; Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, USA.
  • Jung KA; Department of Chemistry, Stanford University, Stanford, California 94305, USA.
  • Kjaer KS; Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, USA.
  • Morawietz T; Department of Chemistry, Stanford University, Stanford, California 94305, USA.
  • Gaffney KJ; Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, USA.
  • van Driel TB; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.
  • Markland TE; Department of Chemistry, Stanford University, Stanford, California 94305, USA.
Phys Rev Lett ; 129(5): 056001, 2022 Jul 29.
Article en En | MEDLINE | ID: mdl-35960558
ABSTRACT
Time-resolved scattering experiments enable imaging of materials at the molecular scale with femtosecond time resolution. However, in disordered media they provide access to just one radial dimension thus limiting the study of orientational structure and dynamics. Here we introduce a rigorous and practical theoretical framework for predicting and interpreting experiments combining optically induced anisotropy and time-resolved scattering. Using impulsive nuclear Raman and ultrafast x-ray scattering experiments of chloroform and simulations, we demonstrate that this framework can accurately predict and elucidate both the spatial and temporal features of these experiments.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Rev Lett Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Rev Lett Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos