Optimal charging of open spin-chain quantum batteries via homodyne-based feedback control.
Phys Rev E
; 106(1-1): 014138, 2022 Jul.
Article
en En
| MEDLINE
| ID: mdl-35974574
We study the problem of charging a dissipative one-dimensional XXX spin-chain quantum battery using local magnetic fields in the presence of spin decay. The introduction of quantum feedback control based on homodyne measurement contributes to improving various performances of the quantum battery, such as energy storage, ergotropy, and effective space utilization rate. For the zero-temperature environment, there is a set of optimal parameters to ensure that the spin-chain quantum battery can be fully charged and the energy stored in the battery can be fully extracted under the perfect measurement condition, which is found through the analytical calculation of a simple two-site spin-chain quantum battery and further verified by numerical simulation of a four-site spin-chain counterpart. For completeness, the adverse effects of imperfect measurement, anisotropic parameter, and finite temperature on the charging process of the quantum battery are also considered.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Phys Rev E
Año:
2022
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Estados Unidos