Your browser doesn't support javascript.
loading
Optimal charging of open spin-chain quantum batteries via homodyne-based feedback control.
Yao, Y; Shao, X Q.
Afiliación
  • Yao Y; Center for Quantum Sciences and School of Physics, Northeast Normal University, Changchun 130024, China and Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China.
  • Shao XQ; Center for Quantum Sciences and School of Physics, Northeast Normal University, Changchun 130024, China and Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China.
Phys Rev E ; 106(1-1): 014138, 2022 Jul.
Article en En | MEDLINE | ID: mdl-35974574
We study the problem of charging a dissipative one-dimensional XXX spin-chain quantum battery using local magnetic fields in the presence of spin decay. The introduction of quantum feedback control based on homodyne measurement contributes to improving various performances of the quantum battery, such as energy storage, ergotropy, and effective space utilization rate. For the zero-temperature environment, there is a set of optimal parameters to ensure that the spin-chain quantum battery can be fully charged and the energy stored in the battery can be fully extracted under the perfect measurement condition, which is found through the analytical calculation of a simple two-site spin-chain quantum battery and further verified by numerical simulation of a four-site spin-chain counterpart. For completeness, the adverse effects of imperfect measurement, anisotropic parameter, and finite temperature on the charging process of the quantum battery are also considered.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Rev E Año: 2022 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Rev E Año: 2022 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos