Your browser doesn't support javascript.
loading
Preservation of high-pressure volatiles in nanostructured diamond capsules.
Zeng, Zhidan; Wen, Jianguo; Lou, Hongbo; Zhang, Xin; Yang, Liuxiang; Tan, Lijie; Cheng, Benyuan; Zuo, Xiaobing; Yang, Wenge; Mao, Wendy L; Mao, Ho-Kwang; Zeng, Qiaoshi.
Afiliación
  • Zeng Z; Center for High Pressure Science and Technology Advanced Research, Shanghai, China.
  • Wen J; Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA.
  • Lou H; Center for High Pressure Science and Technology Advanced Research, Shanghai, China.
  • Zhang X; Center for High Pressure Science and Technology Advanced Research, Shanghai, China.
  • Yang L; Center for High Pressure Science and Technology Advanced Research, Shanghai, China.
  • Tan L; Center for High Pressure Science and Technology Advanced Research, Shanghai, China.
  • Cheng B; Center for High Pressure Science and Technology Advanced Research, Shanghai, China.
  • Zuo X; Shanghai Institute of Laser Plasma, Shanghai, China.
  • Yang W; X-ray Science Division, Argonne National Laboratory, Lemont, IL, USA.
  • Mao WL; Center for High Pressure Science and Technology Advanced Research, Shanghai, China.
  • Mao HK; Department of Geological Sciences, Stanford University, Stanford, CA, USA. wmao@stanford.edu.
  • Zeng Q; Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA. wmao@stanford.edu.
Nature ; 608(7923): 513-517, 2022 08.
Article en En | MEDLINE | ID: mdl-35978124
ABSTRACT
High pressure induces dramatic changes and novel phenomena in condensed volatiles1,2 that are usually not preserved after recovery from pressure vessels. Here we report a process that pressurizes volatiles into nanopores of type 1 glassy carbon precursors, converts glassy carbon into nanocrystalline diamond by heating and synthesizes free-standing nanostructured diamond capsules (NDCs) capable of permanently preserving volatiles at high pressures, even after release back to ambient conditions for various vacuum-based diagnostic probes including electron microscopy. As a demonstration, we perform a comprehensive study of a high-pressure argon sample preserved in NDCs. Synchrotron X-ray diffraction and high-resolution transmission electron microscopy show nanometre-sized argon crystals at around 22.0 gigapascals embedded in nanocrystalline diamond, energy-dispersive X­ray spectroscopy provides quantitative compositional analysis and electron energy-loss spectroscopy details the chemical bonding nature of high-pressure argon. The preserved pressure of the argon sample inside NDCs can be tuned by controlling NDC synthesis pressure. To test the general applicability of the NDC process, we show that high-pressure neon can also be trapped in NDCs and that type 2 glassy carbon can be used as the precursor container material. Further experiments on other volatiles and carbon allotropes open the possibility of bringing high-pressure explorations on a par with mainstream condensed-matter investigations and applications.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nature Año: 2022 Tipo del documento: Article País de afiliación: China Pais de publicación: ENGLAND / ESCOCIA / GB / GREAT BRITAIN / INGLATERRA / REINO UNIDO / SCOTLAND / UK / UNITED KINGDOM

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nature Año: 2022 Tipo del documento: Article País de afiliación: China Pais de publicación: ENGLAND / ESCOCIA / GB / GREAT BRITAIN / INGLATERRA / REINO UNIDO / SCOTLAND / UK / UNITED KINGDOM