Your browser doesn't support javascript.
loading
Modelling atomic layer deposition overcoating formation on a porous heterogeneous catalyst.
Heikkinen, Niko; Lehtonen, Juha; Keskiväli, Laura; Yim, Jihong; Shetty, Shwetha; Ge, Yanling; Reinikainen, Matti; Putkonen, Matti.
Afiliación
  • Heikkinen N; VTT Technical Research Centre of Finland, P.O.Box 1000, FIN-02044 VTT, Espoo, Finland. niko.heikkinen@vtt.fi.
  • Lehtonen J; VTT Technical Research Centre of Finland, P.O.Box 1000, FIN-02044 VTT, Espoo, Finland. niko.heikkinen@vtt.fi.
  • Keskiväli L; VTT Technical Research Centre of Finland, P.O.Box 1000, FIN-02044 VTT, Espoo, Finland. niko.heikkinen@vtt.fi.
  • Yim J; Department of Chemical and Metallurgical Engineering, Aalto University School of Chemical Engineering, Kemistintie 1, Espoo, Finland. jihong.yim@aalto.fi.
  • Shetty S; University of Helsinki, Department of Chemistry, P.O.Box 55, FIN-00014, Helsinki, Finland. shwetha.ariyadka@helsinki.fi.
  • Ge Y; VTT Technical Research Centre of Finland, P.O.Box 1000, FIN-02044 VTT, Espoo, Finland. niko.heikkinen@vtt.fi.
  • Reinikainen M; VTT Technical Research Centre of Finland, P.O.Box 1000, FIN-02044 VTT, Espoo, Finland. niko.heikkinen@vtt.fi.
  • Putkonen M; University of Helsinki, Department of Chemistry, P.O.Box 55, FIN-00014, Helsinki, Finland. shwetha.ariyadka@helsinki.fi.
Phys Chem Chem Phys ; 24(34): 20506-20516, 2022 Aug 31.
Article en En | MEDLINE | ID: mdl-35993759
ABSTRACT
Atomic layer deposition (ALD) was used to deposit a protective overcoating (Al2O3) on an industrially relevant Co-based Fischer-Tropsch catalyst. A trimethylaluminium/water (TMA/H2O) ALD process was used to prepare ∼0.7-2.2 nm overcoatings on an incipient wetness impregnated Co-Pt/TiO2 catalyst. A diffusion-reaction differential equation model was used to predict precursor transport and the resulting deposited overcoating surface coverage inside a catalyst particle. The model was validated against transmission electron (TEM) and scanning electron (SEM) microscopy studies. The prepared model utilised catalyst physical properties and ALD process parameters to estimate achieved overcoating thickness for 20 and 30 deposition cycles (1.36 and 2.04 nm respectively). The TEM analysis supported these estimates, with 1.29 ± 0.16 and 2.15 ± 0.29 nm average layer thicknesses. In addition to layer thickness estimation, the model was used to predict overcoating penetration into the porous catalyst. The model estimated a penetration depth of ∼19 µm, and cross-sectional scanning electron microscopy supported the prediction with a deepest penetration of 15-18 µm. The model successfully estimated the deepest penetration, however, the microscopy study showed penetration depth fluctuation between 0-18 µm, having an average of 9.6 µm.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Phys Chem Chem Phys Asunto de la revista: BIOFISICA / QUIMICA Año: 2022 Tipo del documento: Article País de afiliación: Finlandia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Phys Chem Chem Phys Asunto de la revista: BIOFISICA / QUIMICA Año: 2022 Tipo del documento: Article País de afiliación: Finlandia
...