Your browser doesn't support javascript.
loading
Molecular mechanisms underlying iron and phosphorus co-limitation responses in the nitrogen-fixing cyanobacterium Crocosphaera.
Yang, Nina; Lin, Yu-An; Merkel, Carlin A; DeMers, Michelle A; Qu, Ping-Ping; Webb, Eric A; Fu, Fei-Xue; Hutchins, David A.
Afiliación
  • Yang N; Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.
  • Lin YA; Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.
  • Merkel CA; Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.
  • DeMers MA; Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.
  • Qu PP; Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.
  • Webb EA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
  • Fu FX; Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.
  • Hutchins DA; Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.
ISME J ; 16(12): 2702-2711, 2022 12.
Article en En | MEDLINE | ID: mdl-36008474
In the nitrogen-limited subtropical gyres, diazotrophic cyanobacteria, including Crocosphaera, provide an essential ecosystem service by converting dinitrogen (N2) gas into ammonia to support primary production in these oligotrophic regimes. Natural gradients of phosphorus (P) and iron (Fe) availability in the low-latitude oceans constrain the biogeography and activity of diazotrophs with important implications for marine biogeochemical cycling. Much remains unknown regarding Crocosphaera's physiological and molecular responses to multiple nutrient limitations. We cultured C. watsonii under Fe, P, and Fe/P (co)-limiting scenarios to link cellular physiology with diel gene expression and observed unique physiological and transcriptional profiles for each treatment. Counterintuitively, reduced growth and N2 fixation resource use efficiencies (RUEs) for Fe or P under P limitation were alleviated under Fe/P co-limitation. Differential gene expression analyses show that Fe/P co-limited cells employ the same responses as single-nutrient limited cells that reduce cellular nutrient requirements and increase responsiveness to environmental change including smaller cell size, protein turnover (Fe-limited), and upregulation of environmental sense-and-respond systems (P-limited). Combined, these mechanisms enhance growth and RUEs in Fe/P co-limited cells. These findings are important to our understanding of nutrient controls on N2 fixation and the implications for primary productivity and microbial dynamics in a changing ocean.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fósforo / Cianobacterias Idioma: En Revista: ISME J Asunto de la revista: MICROBIOLOGIA / SAUDE AMBIENTAL Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fósforo / Cianobacterias Idioma: En Revista: ISME J Asunto de la revista: MICROBIOLOGIA / SAUDE AMBIENTAL Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido