Your browser doesn't support javascript.
loading
Contrasting Roles of Ethylene Response Factors in Pathogen Response and Ripening in Fleshy Fruit.
Li, Shan; Wu, Pan; Yu, Xiaofen; Cao, Jinping; Chen, Xia; Gao, Lei; Chen, Kunsong; Grierson, Donald.
Afiliación
  • Li S; Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
  • Wu P; Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
  • Yu X; Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
  • Cao J; College of Agriculture and Biotechnology, Zhejiang University, Zijinggang Campus, Hangzhou 310058, China.
  • Chen X; College of Food Science and Engineering, Hainan University, Haikou 570228, China.
  • Gao L; Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
  • Chen K; College of Agriculture and Biotechnology, Zhejiang University, Zijinggang Campus, Hangzhou 310058, China.
  • Grierson D; Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijinggang Campus, Hangzhou 310058, China.
Cells ; 11(16)2022 08 10.
Article en En | MEDLINE | ID: mdl-36010560
ABSTRACT
Fleshy fruits are generally hard and unpalatable when unripe; however, as they mature, their quality is transformed by the complex and dynamic genetic and biochemical process of ripening, which affects all cell compartments. Ripening fruits are enriched with nutrients such as acids, sugars, vitamins, attractive volatiles and pigments and develop a pleasant taste and texture and become attractive to eat. Ripening also increases sensitivity to pathogens, and this presents a crucial problem for fruit postharvest transport and storage how to enhance pathogen resistance while maintaining ripening quality. Fruit development and ripening involve many changes in gene expression regulated by transcription factors (TFs), some of which respond to hormones such as auxin, abscisic acid (ABA) and ethylene. Ethylene response factor (ERF) TFs regulate both fruit ripening and resistance to pathogen stresses. Different ERFs regulate fruit ripening and/or pathogen responses in both fleshy climacteric and non-climacteric fruits and function cooperatively or independently of other TFs. In this review, we summarize the current status of studies on ERFs that regulate fruit ripening and responses to infection by several fungal pathogens, including a systematic ERF transcriptome analysis of fungal grey mould infection of tomato caused by Botrytis cinerea. This deepening understanding of the function of ERFs in fruit ripening and pathogen responses may identify novel approaches for engineering transcriptional regulation to improve fruit quality and pathogen resistance.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Solanum lycopersicum / Frutas Tipo de estudio: Prognostic_studies Idioma: En Revista: Cells Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Solanum lycopersicum / Frutas Tipo de estudio: Prognostic_studies Idioma: En Revista: Cells Año: 2022 Tipo del documento: Article País de afiliación: China