Your browser doesn't support javascript.
loading
AdaSG: A Lightweight Feature Point Matching Method Using Adaptive Descriptor with GNN for VSLAM.
Liu, Ye; Huang, Kun; Li, Jingyuan; Li, Xiangting; Zeng, Zeng; Chang, Liang; Zhou, Jun.
Afiliación
  • Liu Y; School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.
  • Huang K; School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.
  • Li J; School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.
  • Li X; School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.
  • Zeng Z; School of Microelectronics, Shanghai University, Shanghai 200444, China.
  • Chang L; School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.
  • Zhou J; School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.
Sensors (Basel) ; 22(16)2022 Aug 11.
Article en En | MEDLINE | ID: mdl-36015753
Feature point matching is a key component in visual simultaneous localization and mapping (VSLAM). Recently, the neural network has been employed in the feature point matching to improve matching performance. Among the state-of-the-art feature point matching methods, the SuperGlue is one of the top methods and ranked the first in the CVPR 2020 workshop on image matching. However, this method utilizes graph neural network (GNN), resulting in large computational complexity, which makes it unsuitable for resource-constrained devices, such as robots and mobile phones. In this work, we propose a lightweight feature point matching method based on the SuperGlue (named as AdaSG). Compared to the SuperGlue, the AdaSG adaptively adjusts its operating architecture according to the similarity of input image pair to reduce the computational complexity while achieving high matching performance. The proposed method has been evaluated through the commonly used datasets, including indoor and outdoor environments. Compared with several state-of-the-art feature point matching methods, the proposed method achieves significantly less runtime (up to 43× for indoor and up to 6× for outdoor) with similar or better matching performance. It is suitable for feature point matching in resource constrained devices.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Reconocimiento de Normas Patrones Automatizadas / Teléfono Celular Idioma: En Revista: Sensors (Basel) Año: 2022 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Reconocimiento de Normas Patrones Automatizadas / Teléfono Celular Idioma: En Revista: Sensors (Basel) Año: 2022 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza