Your browser doesn't support javascript.
loading
DNA Self-Assembly of Single Molecules with Deterministic Position and Orientation.
Adamczyk, Aleksandra K; Huijben, Teun A P M; Sison, Miguel; Di Luca, Andrea; Chiarelli, Germán; Vanni, Stefano; Brasselet, Sophie; Mortensen, Kim I; Stefani, Fernando D; Pilo-Pais, Mauricio; Acuna, Guillermo P.
Afiliación
  • Adamczyk AK; Department of Physics, University of Fribourg, Chemin du Musée 3, FribourgCH-1700, Switzerland.
  • Huijben TAPM; Department of Health Technology, Technical University of Denmark, Anker Engelunds Vej 101, 2800Kongens Lyngby, Denmark.
  • Sison M; Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, F-13013Marseille, France.
  • Di Luca A; Department of Biology, University of Fribourg, Chemin du Musée 10, FribourgCH-1700, Switzerland.
  • Chiarelli G; Department of Physics, University of Fribourg, Chemin du Musée 3, FribourgCH-1700, Switzerland.
  • Vanni S; Department of Biology, University of Fribourg, Chemin du Musée 10, FribourgCH-1700, Switzerland.
  • Brasselet S; Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, F-13013Marseille, France.
  • Mortensen KI; Department of Health Technology, Technical University of Denmark, Anker Engelunds Vej 101, 2800Kongens Lyngby, Denmark.
  • Stefani FD; Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQDCiudad Autónoma de Buenos Aires, Argentina.
  • Pilo-Pais M; Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Güiraldes 2620, C1428EHACiudad Autónoma de Buenos Aires, Argentina.
  • Acuna GP; Department of Physics, University of Fribourg, Chemin du Musée 3, FribourgCH-1700, Switzerland.
ACS Nano ; 16(10): 16924-16931, 2022 10 25.
Article en En | MEDLINE | ID: mdl-36065997
ABSTRACT
An ideal nanofabrication method should allow the organization of nanoparticles and molecules with nanometric positional precision, stoichiometric control, and well-defined orientation. The DNA origami technique has evolved into a highly versatile bottom-up nanofabrication methodology that fulfils almost all of these features. It enables the nanometric positioning of molecules and nanoparticles with stoichiometric control, and even the orientation of asymmetrical nanoparticles along predefined directions. However, orienting individual molecules has been a standing challenge. Here, we show how single molecules, namely, Cy5 and Cy3 fluorophores, can be incorporated in a DNA origami with controlled orientation by doubly linking them to oligonucleotide strands that are hybridized while leaving unpaired bases in the scaffold. Increasing the number of bases unpaired induces a stretching of the fluorophore linkers, reducing its mobility freedom, and leaves more space for the fluorophore to accommodate and find different sites for interaction with the DNA. Particularly, we explore the effects of leaving 0, 2, 4, 6, and 8 bases unpaired and find extreme orientations for 0 and 8 unpaired bases, corresponding to the molecules being perpendicular and parallel to the DNA double-helix, respectively. We foresee that these results will expand the application field of DNA origami toward the fabrication of nanodevices involving a wide range of orientation-dependent molecular interactions, such as energy transfer, intermolecular electron transport, catalysis, exciton delocalization, or the electromagnetic coupling of a molecule to specific resonant nanoantenna modes.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Nanotecnología / Nanopartículas Idioma: En Revista: ACS Nano Año: 2022 Tipo del documento: Article País de afiliación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Nanotecnología / Nanopartículas Idioma: En Revista: ACS Nano Año: 2022 Tipo del documento: Article País de afiliación: Suiza