Your browser doesn't support javascript.
loading
Effects of surface rigidity and metallicity on dielectric properties and ion interactions at aqueous hydrophobic interfaces.
Loche, Philip; Scalfi, Laura; Ali Amu, Mustakim; Schullian, Otto; Bonthuis, Douwe J; Rotenberg, Benjamin; Netz, Roland R.
Afiliación
  • Loche P; Laboratory of Computational Science and Modeling, IMX, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
  • Scalfi L; Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany.
  • Ali Amu M; Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, CNRS 8234, Sorbonne Université, F-75005 Paris, France.
  • Schullian O; Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany.
  • Bonthuis DJ; Institute of Theoretical and Computational Physics, Graz University of Technology, 8010 Graz, Austria.
  • Rotenberg B; Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, CNRS 8234, Sorbonne Université, F-75005 Paris, France.
  • Netz RR; Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany.
J Chem Phys ; 157(9): 094707, 2022 Sep 07.
Article en En | MEDLINE | ID: mdl-36075721
Using classical molecular dynamics simulations, we investigate the dielectric properties at interfaces of water with graphene, graphite, hexane, and water vapor. For graphite, we compare metallic and nonmetallic versions. At the vapor-liquid water and hexane-water interfaces, the laterally averaged dielectric profiles are significantly broadened due to interfacial roughness and only slightly anisotropic. In contrast, at the rigid graphene surface, the dielectric profiles are strongly anisotropic and the perpendicular dielectric profile exhibits pronounced oscillations and sign changes. The interfacial dielectric excess, characterized by the shift of the dielectric dividing surface with respect to the Gibbs dividing surface, is positive for all surfaces, showing that water has an enhanced dielectric response at hydrophobic surfaces. The dielectric dividing surface positions vary significantly among the different surfaces, which points to pronounced surface-specific dielectric behavior. The interfacial repulsion of a chloride ion is shown to be dominated by electrostatic interactions for the soft fluid-fluid interfaces and by non-electrostatic Lennard-Jones interactions for the rigid graphene-water interface. A linear tensorial dielectric model for the ion-interface interaction with sharp dielectric interfaces located on the dielectric dividing surface positions works well for graphene but fails for vapor and hexane, because these interfaces are smeared out. The repulsion of chloride from the metallic and nonmetallic graphite versions differs very little, which reflects the almost identical interfacial water structure and can be understood based on linear continuum dielectric theory. Interface flexibility shows up mostly in the nonlinear Coulomb part of the ion-interface interaction, which changes significantly close to the interfaces and signals the breakdown of linear dielectric continuum theory.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Chem Phys Año: 2022 Tipo del documento: Article País de afiliación: Suiza Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Chem Phys Año: 2022 Tipo del documento: Article País de afiliación: Suiza Pais de publicación: Estados Unidos