Your browser doesn't support javascript.
loading
Triplet Loss-Based Models for COVID-19 Detection from Vocal Sounds.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 998-1001, 2022 07.
Article en En | MEDLINE | ID: mdl-36086187
This work focuses on the automatic detection of COVID-19 from the analysis of vocal sounds, including sustained vowels, coughs, and speech while reading a short text. Specifically, we use the Mel-spectrogram representations of these acoustic signals to train neural network-based models for the task at hand. The extraction of deep learnt representations from the Mel-spectrograms is performed with Convolutional Neural Networks (CNNs). In an attempt to guide the training of the embedded representations towards more separable and robust inter-class representations, we explore the use of a triplet loss function. The experiments performed are conducted using the Your Voice Counts dataset, a new dataset containing German speakers collected using smartphones. The results obtained support the suitability of using triplet loss-based models to detect COVID-19 from vocal sounds. The best Unweighted Average Recall (UAR) of 66.5 % is obtained using a triplet loss-based model exploiting vocal sounds recorded while reading.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Voz / COVID-19 Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Humans Idioma: En Revista: Annu Int Conf IEEE Eng Med Biol Soc Año: 2022 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Voz / COVID-19 Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Humans Idioma: En Revista: Annu Int Conf IEEE Eng Med Biol Soc Año: 2022 Tipo del documento: Article Pais de publicación: Estados Unidos