Your browser doesn't support javascript.
loading
Large harvested energy with non-linear pyroelectric modules.
Lheritier, Pierre; Torelló, Alvar; Usui, Tomoyasu; Nouchokgwe, Youri; Aravindhan, Ashwath; Li, Junning; Prah, Uros; Kovacova, Veronika; Bouton, Olivier; Hirose, Sakyo; Defay, Emmanuel.
Afiliación
  • Lheritier P; Materials Research and Technology Department, Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg.
  • Torelló A; Materials Research and Technology Department, Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg. alvar.torello@list.lu.
  • Usui T; University of Luxembourg, Esch-sur-Alzette, Luxembourg. alvar.torello@list.lu.
  • Nouchokgwe Y; Murata Manufacturing Co., Ltd., Nagaokakyo, Japan.
  • Aravindhan A; Materials Research and Technology Department, Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg.
  • Li J; University of Luxembourg, Esch-sur-Alzette, Luxembourg.
  • Prah U; Materials Research and Technology Department, Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg.
  • Kovacova V; University of Luxembourg, Esch-sur-Alzette, Luxembourg.
  • Bouton O; Materials Research and Technology Department, Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg.
  • Hirose S; Materials Research and Technology Department, Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg.
  • Defay E; Materials Research and Technology Department, Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg.
Nature ; 609(7928): 718-721, 2022 09.
Article en En | MEDLINE | ID: mdl-36097191
Coming up with sustainable sources of electricity is one of the grand challenges of this century. The research field of materials for energy harvesting stems from this motivation, including thermoelectrics1, photovoltaics2 and thermophotovoltaics3. Pyroelectric materials, converting temperature periodic variations in electricity, have been considered as sensors4 and energy harvesters5-7, although we lack materials and devices able to harvest in the joule range. Here we develop a macroscopic thermal energy harvester made of 42 g of lead scandium tantalate in the form of multilayer capacitors that produces 11.2 J of electricity per thermodynamic cycle. Each pyroelectric module can generate up to 4.43 J cm-3 of electric energy density per cycle. We also show that two of these modules weighing 0.3 g are sufficient to sustainably supply an autonomous energy harvester embedding microcontrollers and temperature sensors. Finally, we show that for a 10 K temperature span these multilayer capacitors can reach 40% of Carnot efficiency. These performances stem from (1) a ferroelectric phase transition enabling large efficiency, (2) low leakage current preventing losses and (3) high breakdown voltage. These macroscopic, scalable and highly efficient pyroelectric energy harvesters enable the reconsideration of the production of electricity from heat.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nature Año: 2022 Tipo del documento: Article País de afiliación: Luxemburgo Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nature Año: 2022 Tipo del documento: Article País de afiliación: Luxemburgo Pais de publicación: Reino Unido