Your browser doesn't support javascript.
loading
Measuring Daily Activity Rhythms in Young Adults at Risk of Affective Instability Using Passively Collected Smartphone Data: Observational Study.
Ren, Benny; Xia, Cedric Huchuan; Gehrman, Philip; Barnett, Ian; Satterthwaite, Theodore.
Afiliación
  • Ren B; Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States.
  • Xia CH; Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States.
  • Gehrman P; Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States.
  • Barnett I; Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States.
  • Satterthwaite T; Michael J Crescenz VA Medical Center, Philadelphia, PA, United States.
JMIR Form Res ; 6(9): e33890, 2022 Sep 14.
Article en En | MEDLINE | ID: mdl-36103225
BACKGROUND: Irregularities in circadian rhythms have been associated with adverse health outcomes. The regularity of rhythms can be quantified using passively collected smartphone data to provide clinically relevant biomarkers of routine. OBJECTIVE: This study aims to develop a metric to quantify the regularity of activity rhythms and explore the relationship between routine and mood, as well as demographic covariates, in an outpatient psychiatric cohort. METHODS: Passively sensed smartphone data from a cohort of 38 young adults from the Penn or Children's Hospital of Philadelphia Lifespan Brain Institute and Outpatient Psychiatry Clinic at the University of Pennsylvania were fitted with 2-state continuous-time hidden Markov models representing active and resting states. The regularity of routine was modeled as the hour-of-the-day random effects on the probability of state transition (ie, the association between the hour-of-the-day and state membership). A regularity score, Activity Rhythm Metric, was calculated from the continuous-time hidden Markov models and regressed on clinical and demographic covariates. RESULTS: Regular activity rhythms were associated with longer sleep durations (P=.009), older age (P=.001), and mood (P=.049). CONCLUSIONS: Passively sensed Activity Rhythm Metrics are an alternative to existing metrics but do not require burdensome survey-based assessments. Low-burden, passively sensed metrics based on smartphone data are promising and scalable alternatives to traditional measurements.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Etiology_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Idioma: En Revista: JMIR Form Res Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Canadá

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Etiology_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Idioma: En Revista: JMIR Form Res Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Canadá