Your browser doesn't support javascript.
loading
Bioactive Fibronectin-III10-DNA Origami Nanofibers Promote Cell Adhesion and Spreading.
Buchberger, Alex; Riker, Kyle; Bernal-Chanchavac, Julio; Narayanan, Raghu Pradeep; Simmons, Chad R; Fahmi, Nour Eddine; Freeman, Ronit; Stephanopoulos, Nicholas.
Afiliación
  • Buchberger A; School of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States.
  • Riker K; Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States.
  • Bernal-Chanchavac J; Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, North Carolina 27514, United States.
  • Narayanan RP; School of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States.
  • Simmons CR; Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States.
  • Fahmi NE; School of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States.
  • Freeman R; Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States.
  • Stephanopoulos N; Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States.
ACS Appl Bio Mater ; 2022 Sep 15.
Article en En | MEDLINE | ID: mdl-36108278
ABSTRACT
The integration of proteins with DNA nanotechnology would enable materials with diverse applications in biology, medicine, and engineering. Here, we describe a method for the incorporation of bioactive fibronectin domain proteins with DNA nanostructures using two orthogonal coiled-coil peptides. One peptide from each coiled-coil pair is attached to a DNA origami cuboid in a multivalent fashion by attaching the peptides to DNA handles. These structures can then be assembled into one-dimensional arrays through the addition of a fibronectin domain linker genetically fused with the complementary peptides to those on the origami. We validate array formation using two different self-assembly protocols and characterize the fibers by atomic force and electron microscopy. Finally, we demonstrate that surfaces coated with the protein-DNA nanofibers can serve as biomaterial substrates for fibroblast adhesion and spreading with the nanofibers showing enhanced bioactivity compared to that of the monomeric protein.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Bio Mater Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Bio Mater Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos