Your browser doesn't support javascript.
loading
Self-Supervised Molecular Pretraining Strategy for Low-Resource Reaction Prediction Scenarios.
Wu, Zhipeng; Cai, Xiang; Zhang, Chengyun; Qiao, Haoran; Wu, Yejian; Zhang, Yun; Wang, Xinqiao; Xie, Haiying; Luo, Feng; Duan, Hongliang.
Afiliación
  • Wu Z; Artificial Intelligence Aided Drug Discovery Institute, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
  • Cai X; PyWise Biotech, Suzhou 215000, P. R. China.
  • Zhang C; Artificial Intelligence Aided Drug Discovery Institute, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
  • Qiao H; College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 201203, P. R. China.
  • Wu Y; Artificial Intelligence Aided Drug Discovery Institute, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
  • Zhang Y; Artificial Intelligence Aided Drug Discovery Institute, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
  • Wang X; Artificial Intelligence Aided Drug Discovery Institute, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
  • Xie H; PUROTON Gene Medical Institute Co., Ltd., Chongqing 400700, P. R. China.
  • Luo F; PUROTON Gene Medical Institute Co., Ltd., Chongqing 400700, P. R. China.
  • Duan H; Artificial Intelligence Aided Drug Discovery Institute, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
J Chem Inf Model ; 62(19): 4579-4590, 2022 10 10.
Article en En | MEDLINE | ID: mdl-36129104
In the face of low-resource reaction training samples, we construct a chemical platform for addressing small-scale reaction prediction problems. Using a self-supervised pretraining strategy called MAsked Sequence to Sequence (MASS), the Transformer model can absorb the chemical information of about 1 billion molecules and then fine-tune on a small-scale reaction prediction. To further strengthen the predictive performance of our model, we combine MASS with the reaction transfer learning strategy. Here, we show that the average improved accuracies of the Transformer model can reach 14.07, 24.26, 40.31, and 57.69% in predicting the Baeyer-Villiger, Heck, C-C bond formation, and functional group interconversion reaction data sets, respectively, marking an important step to low-resource reaction prediction.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: J Chem Inf Model Asunto de la revista: INFORMATICA MEDICA / QUIMICA Año: 2022 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: J Chem Inf Model Asunto de la revista: INFORMATICA MEDICA / QUIMICA Año: 2022 Tipo del documento: Article Pais de publicación: Estados Unidos