Your browser doesn't support javascript.
loading
The fractal brain: scale-invariance in structure and dynamics.
Grosu, George F; Hopp, Alexander V; Moca, Vasile V; Bârzan, Harald; Ciuparu, Andrei; Ercsey-Ravasz, Maria; Winkel, Mathias; Linde, Helmut; Mureșan, Raul C.
Afiliación
  • Grosu GF; Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania.
  • Hopp AV; Faculty of Electronics, Telecommunications and Information Technology, Technical University of Cluj-Napoca, Str. Memorandumului 28, 400114 Cluj-Napoca, Romania.
  • Moca VV; Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany.
  • Bârzan H; Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania.
  • Ciuparu A; Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania.
  • Ercsey-Ravasz M; Faculty of Electronics, Telecommunications and Information Technology, Technical University of Cluj-Napoca, Str. Memorandumului 28, 400114 Cluj-Napoca, Romania.
  • Winkel M; Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania.
  • Linde H; Faculty of Electronics, Telecommunications and Information Technology, Technical University of Cluj-Napoca, Str. Memorandumului 28, 400114 Cluj-Napoca, Romania.
  • Mureșan RC; Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania.
Cereb Cortex ; 33(8): 4574-4605, 2023 04 04.
Article en En | MEDLINE | ID: mdl-36156074
ABSTRACT
The past 40 years have witnessed extensive research on fractal structure and scale-free dynamics in the brain. Although considerable progress has been made, a comprehensive picture has yet to emerge, and needs further linking to a mechanistic account of brain function. Here, we review these concepts, connecting observations across different levels of organization, from both a structural and functional perspective. We argue that, paradoxically, the level of cortical circuits is the least understood from a structural point of view and perhaps the best studied from a dynamical one. We further link observations about scale-freeness and fractality with evidence that the environment provides constraints that may explain the usefulness of fractal structure and scale-free dynamics in the brain. Moreover, we discuss evidence that behavior exhibits scale-free properties, likely emerging from similarly organized brain dynamics, enabling an organism to thrive in an environment that shares the same organizational principles. Finally, we review the sparse evidence for and try to speculate on the functional consequences of fractality and scale-freeness for brain computation. These properties may endow the brain with computational capabilities that transcend current models of neural computation and could hold the key to unraveling how the brain constructs percepts and generates behavior.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Encéfalo / Fractales Idioma: En Revista: Cereb Cortex Asunto de la revista: CEREBRO Año: 2023 Tipo del documento: Article País de afiliación: Rumanía

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Encéfalo / Fractales Idioma: En Revista: Cereb Cortex Asunto de la revista: CEREBRO Año: 2023 Tipo del documento: Article País de afiliación: Rumanía