Your browser doesn't support javascript.
loading
A microexplosive shockwave-based drug delivery microsystem for treating hard-to-reach areas in the human body.
Sun, Yi; Lou, Wenzhong; Feng, Hengzhen; Su, Wenting; Lv, Sining.
Afiliación
  • Sun Y; Science and Technology on Electromechanical Dynamic Control Laboratory, School of Mechatronical Engineering, Beijing Institute of technology, Beijing, China.
  • Lou W; Beijing Institute of Technology Chongqing Innovation Center, Chongqing, China.
  • Feng H; Science and Technology on Electromechanical Dynamic Control Laboratory, School of Mechatronical Engineering, Beijing Institute of technology, Beijing, China.
  • Su W; Beijing Institute of Technology Chongqing Innovation Center, Chongqing, China.
  • Lv S; Science and Technology on Electromechanical Dynamic Control Laboratory, School of Mechatronical Engineering, Beijing Institute of technology, Beijing, China.
Microsyst Nanoeng ; 8: 106, 2022.
Article en En | MEDLINE | ID: mdl-36164485
Implantable drug-delivery microsystems have the capacity to locally meet therapeutic requirements by maximizing local drug efficacy and minimizing potential side effects. The internal organs of the human body including the esophagus, gastrointestinal tract, and respiratory tract, with anfractuos contours, all manifest with endoluminal lesions often located in a curved or zigzag area. The ability of localized drug delivery for these organs using existing therapeutic modalities is limited. Spraying a drug onto these areas and using the adhesion and water absorption properties of the drug powder to attach to lesion areas can provide effective treatment. This study aimed to report the development and application of microsystems based on microshockwave delivery of drugs. The devices comprised a warhead-like shell with a powder placed at the head of the device and a flexible rod that could be inserted at the tail. These devices had the capacity to deposit drugs on mucous membranes in curved or zigzag areas of organs in the body. The explosive impact characteristics of the device during drug delivery were analyzed by numerical simulation. In the experiment of drug delivery in pig intestines, we described the biosafety and drug delivery capacity of the system. We anticipate that such microsystems could be applied to a range of endoluminal diseases in curved or zigzag regions of the human body while maximizing the on-target effects of drugs.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Microsyst Nanoeng Año: 2022 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Microsyst Nanoeng Año: 2022 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido