Your browser doesn't support javascript.
loading
Metabolism and in vitro assessment of the mutagenic activity of urinary extracts from rats after inhalation exposure to 1-methylnaphthalene.
Swiercz, Radoslaw; Stepnik, Maciej; Gromadzinska, Jolanta; Domeradzka-Gajda, Katarzyna; Roszak, Joanna; Wasowicz, Wojciech.
Afiliación
  • Swiercz R; Nofer Institute of Occupational Medicine, Lódz, Poland (Department of Translational Research).
  • Stepnik M; Nofer Institute of Occupational Medicine, Lódz, Poland (Department of Translational Research).
  • Gromadzinska J; QSAR Lab, Ltd, Gdansk, Poland.
  • Domeradzka-Gajda K; Nofer Institute of Occupational Medicine, Lódz, Poland (Department of Biological and Environmental Monitoring).
  • Roszak J; Nofer Institute of Occupational Medicine, Lódz, Poland (Department of Translational Research).
  • Wasowicz W; Nofer Institute of Occupational Medicine, Lódz, Poland (Department of Translational Research).
Int J Occup Med Environ Health ; 35(6): 731-746, 2022 Dec 15.
Article en En | MEDLINE | ID: mdl-36169319
ABSTRACT

OBJECTIVES:

1-Methylnaphthalene (1-MN) is composed of 2 benzene rings and belongs to polycyclic aromatic hydrocarbons. The metabolism of 1-MN in laboratory animals and bacteria leads to the formation of 1-naphthoic acid (1-NA). MATERIAL AND

METHODS:

In this study the distribution of 1-NA in lung, liver, spleen, kidney and urinary excretion of 1-NA in rats after single and repeated inhalation exposure to 1-MN vapors were investigated. The activity of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and cytochrome were measured of the rats. Genotoxic effects were evaluated with the in vitro micronucleus test on V79 hamster fibroblasts.

RESULTS:

The concentrations of 1-NA in the tissues of rats after single and repeated exposure to 1-MN were dependent on the exposure dose. High levels of 1-NA were found in kidneys of animals after the single and repeated exposure to 1-MN. With an increase of 1-MN dose, an increase in the activity of cytochrome P450 (CYP1A1 and CYP1A2) was observed in the liver of rats. Compared to control animals, significantly higher ALT activity was noted in serum of rats exposed to 1-MN. The micronuclei frequency in V79 cells exposed to 1-MN (in the range of analyzable concentrations; i.e., 5-25 µg/ml) did not differ significantly from the vehicle control, whereas urine extracts from rats exposed to 1-MN induced a significant increase in the frequency of micronuclei compared to urine extracts from the group of control animals.

CONCLUSIONS:

Metabolism of 1-MN in rats after the inhalation exposure leading to 1-NA was mainly observed during the first day after the end of exposure. It is likely that 1-MN metabolites present in rat urine can induce the increased micronuclei frequency as was shown in V79 cells. Int J Occup Med Environ Health. 2022;35(6)731-46.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Exposición por Inhalación / Mutágenos Límite: Animals Idioma: En Revista: Int J Occup Med Environ Health Asunto de la revista: MEDICINA OCUPACIONAL / SAUDE AMBIENTAL Año: 2022 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Exposición por Inhalación / Mutágenos Límite: Animals Idioma: En Revista: Int J Occup Med Environ Health Asunto de la revista: MEDICINA OCUPACIONAL / SAUDE AMBIENTAL Año: 2022 Tipo del documento: Article