Your browser doesn't support javascript.
loading
HDAC5 RNA interference ameliorates acute renal injury by upregulating KLF2 and inhibiting NALP3 expression in a mouse model of oxalate nephropathy.
Sharma, Pravesh; Karnam, Kalyani; Mahale, Ashutosh; Sedmaki, Kavitha; Krishna Venuganti, Vamsi; Kulkarni, Onkar Prakash.
Afiliación
  • Sharma P; Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, India.
  • Karnam K; Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, India.
  • Mahale A; Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, India.
  • Sedmaki K; Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, India.
  • Krishna Venuganti V; Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, India.
  • Kulkarni OP; Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, India. Electronic address: onkar@hyderabad.bits-pilani.ac.in.
Int Immunopharmacol ; 112: 109264, 2022 Nov.
Article en En | MEDLINE | ID: mdl-36183679
ABSTRACT
Krüppel-like factor 2 (KLF2) and NLR family pyrin domain containing 3 (NALP3) are important regulators of macrophage activation in the context of various pathological conditions. NALP3 also plays an important role in the maturation of IL-1 ß which is central to the pathogenesis of acute oxalate nephropathy. The functional role of KLF2 and regulation of both KLF2 and NALP3 in the pathogenesis of acute oxalate nephropathy is comparably less studied. Here, we explored the regulation of KLF2 and NALP3 by Histone deacetylase 5 (HDAC5) in oxalate crystals stimulated macrophages, and in the pathogenesis of acute oxalate nephropathy in mice. We observed upregulated expression of HDAC5 along with IL-1ß, Caspase1, and NALP3, while the expression of KLF2 was downregulated in stimulated macrophages and in the renal tissue of mice with acute oxalate nephropathy. We formulated chitosan HDAC5 siRNA nanoparticles to deliver the siRNA in in-vitro and in-vivo settings. siHDAC5 treated cells exhibited decreased expression of IL-1ß, and TNF-α in the supernatant, and reduced expression of NALP3, Pro-caspase1, active caspase1, Pro-IL-1ß, and IL-1ß in cell lysate. Concurrently, the expression of KLF2 was upregulated in HDAC5 depleted cells upon stimulation with crystals. Mice treated with siHDAC5 nanoparticles showed protection against renal impairment with improved renal function (plasma BUN and creatinine levels), reduced inflammation (IL-1ß expression), reduced accumulation of neutrophils, reduced tubular injury, reduced acute renal injury markers (KIM-1, NGAL-1), reduced expression of NALP3, Pro-caspase1, active caspase1, Pro-IL-1ß, and IL-1ß. Whereas, the expression of KLF2 was significantly upregulated by depletion of HDAC5 in mice.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Quitosano / Lesión Renal Aguda Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Int Immunopharmacol Asunto de la revista: ALERGIA E IMUNOLOGIA / FARMACOLOGIA Año: 2022 Tipo del documento: Article País de afiliación: India

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Quitosano / Lesión Renal Aguda Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Int Immunopharmacol Asunto de la revista: ALERGIA E IMUNOLOGIA / FARMACOLOGIA Año: 2022 Tipo del documento: Article País de afiliación: India