Machine learning predicts improvement of functional outcomes in traumatic brain injury patients after inpatient rehabilitation.
Front Rehabil Sci
; 3: 1005168, 2022.
Article
en En
| MEDLINE
| ID: mdl-36211830
Survivors of traumatic brain injury (TBI) have an unpredictable clinical course. This unpredictability makes clinical resource allocation for clinicians and anticipatory guidance for patients difficult. Historically, experienced clinicians and traditional statistical models have insufficiently considered all available clinical information to predict functional outcomes for a TBI patient. Here, we harness artificial intelligence and apply machine learning and statistical models to predict the Functional Independence Measure (FIM) scores after rehabilitation for traumatic brain injury (TBI) patients. Tree-based algorithmic analysis of 629 TBI patients admitted to a large acute rehabilitation facility showed statistically significant improvement in motor and cognitive FIM scores at discharge.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Tipo de estudio:
Guideline
/
Prognostic_studies
/
Risk_factors_studies
Idioma:
En
Revista:
Front Rehabil Sci
Año:
2022
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Suiza