Your browser doesn't support javascript.
loading
Machine learning predicts improvement of functional outcomes in traumatic brain injury patients after inpatient rehabilitation.
Say, Irene; Chen, Yiling Elaine; Sun, Matthew Z; Li, Jingyi Jessica; Lu, Daniel C.
Afiliación
  • Say I; Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, United States.
  • Chen YE; Department of Statistics, University of California, Los Angeles, CA, United States.
  • Sun MZ; Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, United States.
  • Li JJ; Department of Statistics, University of California, Los Angeles, CA, United States.
  • Lu DC; Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, United States.
Front Rehabil Sci ; 3: 1005168, 2022.
Article en En | MEDLINE | ID: mdl-36211830
Survivors of traumatic brain injury (TBI) have an unpredictable clinical course. This unpredictability makes clinical resource allocation for clinicians and anticipatory guidance for patients difficult. Historically, experienced clinicians and traditional statistical models have insufficiently considered all available clinical information to predict functional outcomes for a TBI patient. Here, we harness artificial intelligence and apply machine learning and statistical models to predict the Functional Independence Measure (FIM) scores after rehabilitation for traumatic brain injury (TBI) patients. Tree-based algorithmic analysis of 629 TBI patients admitted to a large acute rehabilitation facility showed statistically significant improvement in motor and cognitive FIM scores at discharge.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Guideline / Prognostic_studies / Risk_factors_studies Idioma: En Revista: Front Rehabil Sci Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Guideline / Prognostic_studies / Risk_factors_studies Idioma: En Revista: Front Rehabil Sci Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Suiza