Your browser doesn't support javascript.
loading
Cardenolide Increase in Foxglove after 2,1,3-Benzothiadiazole Treatment Reveals a Potential Link between Cardenolide and Phytosterol Biosynthesis.
Raghavan, Indu; Ravi Gopal, Baradwaj; Carroll, Emily; Wang, Zhen Q.
Afiliación
  • Raghavan I; Department of Biological Sciences, University at Buffalo, The State University of New York, 109 Cooke Hall, Buffalo, NY 14260, USA.
  • Ravi Gopal B; Department of Biological Sciences, University at Buffalo, The State University of New York, 109 Cooke Hall, Buffalo, NY 14260, USA.
  • Carroll E; Department of Biological Sciences, University at Buffalo, The State University of New York, 109 Cooke Hall, Buffalo, NY 14260, USA.
  • Wang ZQ; Department of Biological Sciences, University at Buffalo, The State University of New York, 109 Cooke Hall, Buffalo, NY 14260, USA.
Plant Cell Physiol ; 64(1): 107-116, 2023 Feb 16.
Article en En | MEDLINE | ID: mdl-36222367
ABSTRACT
Cardenolides are steroidal metabolites in Digitalis lanata with potent cardioactive effects on animals. In plants, cardenolides are likely involved in various stress responses. However, the molecular mechanism of cardenolide increase during stresses is mostly unknown. Additionally, cardenolides are proposed to arise from cholesterol, but indirect results show that phytosterols may also be substrates for cardenolide biosynthesis. Here, we show that cardenolides increased after methyl jasmonate (MJ), sorbitol, potassium chloride (KCl) and salicylic acid analog [2,1,3-benzothiadiazole (BTH)] treatments. However, the expression of three known genes for cardenolide biosynthesis did not correlate well with these increases. Specifically, the expression of progesterone-5ß-reductases (P5ßR and P5ßR2) did not correlate with the cardenolide increase. The expression of 3ß-hydroxysteroid dehydrogenase (3ßHSD) correlated with changes in cardenolide levels only during the BTH treatment. Mining the D. lanata transcriptome identified genes involved in cholesterol and phytosterol bio

synthesis:

C24 sterol sidechain reductase 1 (SSR1), C4 sterol methyl oxidase 1, and 3 (SMO1 and SMO3). Surprisingly, the expression of all three genes correlated well with the cardenolide increase after the BTH treatment. Phylogenetic analysis showed that SSR1 is likely involved in both cholesterol and phytosterol biosynthesis. In addition, SMO1 is likely specific to phytosterol biosynthesis, and SMO3 is specific to cholesterol biosynthesis. These results suggest that stress-induced increase of cardenolides in foxglove may correlate with cholesterol and phytosterol biosynthesis. In summary, this work shows that cardenolides are important for stress responses in D. lanata and reveals a potential link between phytosterol and cardenolide biosynthesis.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fitosteroles / Digitalis Límite: Animals Idioma: En Revista: Plant Cell Physiol Asunto de la revista: BOTANICA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fitosteroles / Digitalis Límite: Animals Idioma: En Revista: Plant Cell Physiol Asunto de la revista: BOTANICA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos