Your browser doesn't support javascript.
loading
Electro Fluid Dynamics: A Route to Design Polymers and Composites for Biomedical and Bio-Sustainable Applications.
Renkler, Nergis Zeynep; Cruz-Maya, Iriczalli; Bonadies, Irene; Guarino, Vincenzo.
Afiliación
  • Renkler NZ; Institute of Polymers, Composites and Biomaterials, National research Council of Italy, Mostra d'Oltremare Pad.20, V. le J.F. Kennedy 54, 80125 Naples, Italy.
  • Cruz-Maya I; Institute of Polymers, Composites and Biomaterials, National research Council of Italy, Mostra d'Oltremare Pad.20, V. le J.F. Kennedy 54, 80125 Naples, Italy.
  • Bonadies I; Institute of Polymers, Composites and Biomaterials, National research Council of Italy, Mostra d'Oltremare Pad.20, V. le J.F. Kennedy 54, 80125 Naples, Italy.
  • Guarino V; Institute of Polymers, Composites and Biomaterials, National research Council of Italy, Mostra d'Oltremare Pad.20, V. le J.F. Kennedy 54, 80125 Naples, Italy.
Polymers (Basel) ; 14(19)2022 Oct 10.
Article en En | MEDLINE | ID: mdl-36236197
ABSTRACT
In the last two decades, several processes have been explored for the development of micro and/or nanostructured substrates by sagely physically and/or chemically manipulating polymer materials. These processes have to be designed to overcome some of the limitations of the traditional ones in terms of feasibility, reproducibility, and sustainability. Herein, the primary aim of this work is to focus on the enormous potential of using a high voltage electric field to manipulate polymers from synthetic and/or natural sources for the fabrication of different devices based on elementary units, i.e., fibers or particles, with different characteristic sizes-from micro to nanoscale. Firstly, basic principles and working mechanisms will be introduced in order to correlate the effect of selected process parameters (i.e., an applied voltage) on the dimensional features of the structures. Secondly, a comprehensive overview of the recent trends and potential uses of these processes will be proposed for different biomedical and bio-sustainable application areas.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Polymers (Basel) Año: 2022 Tipo del documento: Article País de afiliación: Italia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Polymers (Basel) Año: 2022 Tipo del documento: Article País de afiliación: Italia