Your browser doesn't support javascript.
loading
Aquila: a spatial omics database and analysis platform.
Zheng, Yimin; Chen, Yitian; Ding, Xianting; Wong, Koon Ho; Cheung, Edwin.
Afiliación
  • Zheng Y; Cancer Centre, University of Macau, Taipa 999078, Macau SAR.
  • Chen Y; Centre for Precision Medicine Research and Training, University of Macau, Taipa 999078, Macau SAR.
  • Ding X; MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa 999078, Macau SAR.
  • Wong KH; Faculty of Health Sciences, University of Macau, Taipa 999078, Macau SAR.
  • Cheung E; Cancer Centre, University of Macau, Taipa 999078, Macau SAR.
Nucleic Acids Res ; 51(D1): D827-D834, 2023 01 06.
Article en En | MEDLINE | ID: mdl-36243967
Spatial omics is a rapidly evolving approach for exploring tissue microenvironment and cellular networks by integrating spatial knowledge with transcript or protein expression information. However, there is a lack of databases for users to access and analyze spatial omics data. To address this limitation, we developed Aquila, a comprehensive platform for managing and analyzing spatial omics data. Aquila contains 107 datasets from 30 diseases, including 6500+ regions of interest, and 15.7 million cells. The database covers studies from spatial transcriptome and proteome analyses, 2D and 3D experiments, and different technologies. Aquila provides visualization of spatial omics data in multiple formats such as spatial cell distribution, spatial expression and co-localization of markers. Aquila also lets users perform many basic and advanced spatial analyses on any dataset. In addition, users can submit their own spatial omics data for visualization and analysis in a safe and secure environment. Finally, Aquila can be installed as an individual app on a desktop and offers the RESTful API service for power users to access the database. Overall, Aquila provides a detailed insight into transcript and protein expression in tissues from a spatial perspective. Aquila is available at https://aquila.cheunglab.org.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Genómica / Bases de Datos Genéticas Límite: Animals Idioma: En Revista: Nucleic Acids Res Año: 2023 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Genómica / Bases de Datos Genéticas Límite: Animals Idioma: En Revista: Nucleic Acids Res Año: 2023 Tipo del documento: Article Pais de publicación: Reino Unido