Your browser doesn't support javascript.
loading
Predicting Adolescent Intervention Non-responsiveness for Precision HIV Prevention Using Machine Learning.
Wang, Bo; Liu, Feifan; Deveaux, Lynette; Ash, Arlene; Gerber, Ben; Allison, Jeroan; Herbert, Carly; Poitier, Maxwell; MacDonell, Karen; Li, Xiaoming; Stanton, Bonita.
Afiliación
  • Wang B; Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, 368 Plantation Street, Albert Sherman Center, Worcester, MA, 01605, USA. Bo.Wang@umassmed.edu.
  • Liu F; Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, 368 Plantation Street, Albert Sherman Center, Worcester, MA, 01605, USA.
  • Deveaux L; Office of HIV/AIDS, Ministry of Health, Shirley Street, Nassau, Bahamas.
  • Ash A; Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, 368 Plantation Street, Albert Sherman Center, Worcester, MA, 01605, USA.
  • Gerber B; Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, 368 Plantation Street, Albert Sherman Center, Worcester, MA, 01605, USA.
  • Allison J; Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, 368 Plantation Street, Albert Sherman Center, Worcester, MA, 01605, USA.
  • Herbert C; Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, 368 Plantation Street, Albert Sherman Center, Worcester, MA, 01605, USA.
  • Poitier M; Office of HIV/AIDS, Ministry of Health, Shirley Street, Nassau, Bahamas.
  • MacDonell K; Department of Family Medicine and Public Health Sciences, Wayne State University School of Medicine, Detroit, MI, USA.
  • Li X; Department of Health Promotion, Education, and Behavior, University of South Carolina Arnold School of Public, Columbia, SC, USA.
  • Stanton B; Hackensack Meridian School of Medicine, 340 Kingsland ST., Nutley, NJ, 07110, USA.
AIDS Behav ; 27(5): 1392-1402, 2023 May.
Article en En | MEDLINE | ID: mdl-36255592
Interventions to teach protective behaviors may be differentially effective within an adolescent population. Identifying the characteristics of youth who are less likely to respond to an intervention can guide program modifications to improve its effectiveness. Using comprehensive longitudinal data on adolescent risk behaviors, perceptions, sensation-seeking, peer and family influence, and neighborhood risk factors from 2564 grade 10-12 students in The Bahamas, this study employs machine learning approaches (support vector machines, logistic regression, decision tree, and random forest) to identify important predictors of non-responsiveness for precision prevention. We used 80% of the data to train the models and the rest for model testing. Among different machine learning algorithms, the random forest model using longitudinal data and the Boruta feature selection approach predicted intervention non-responsiveness best, achieving sensitivity of 85.4%, specificity of 78.4% and AUROC of 0.93 on the training data, and sensitivity of 84.3%, specificity of 67.1%, and AUROC of 0.85 on the test data. Key predictors include self-efficacy, perceived response cost, parent monitoring, vulnerability, response efficacy, HIV/AIDS knowledge, communication about condom use, and severity of HIV/STI. Machine learning can yield powerful predictive models to identify adolescents who are unlikely to respond to an intervention. Such models can guide the development of alternative strategies that may be more effective with intervention non-responders.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Enfermedades de Transmisión Sexual / Infecciones por VIH / Síndrome de Inmunodeficiencia Adquirida Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Adolescent / Humans Idioma: En Revista: AIDS Behav Asunto de la revista: CIENCIAS DO COMPORTAMENTO / SINDROME DA IMUNODEFICIENCIA ADQUIRIDA (AIDS) Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Enfermedades de Transmisión Sexual / Infecciones por VIH / Síndrome de Inmunodeficiencia Adquirida Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Adolescent / Humans Idioma: En Revista: AIDS Behav Asunto de la revista: CIENCIAS DO COMPORTAMENTO / SINDROME DA IMUNODEFICIENCIA ADQUIRIDA (AIDS) Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos