The influence of 5-fluorouracil on the α-ketoglutarate dehydrogenase complex in rat's cardiac muscle - a preliminary study.
Folia Med Cracov
; 62(2): 27-35, 2022.
Article
en En
| MEDLINE
| ID: mdl-36256893
5-fluorouracil (5-FU), which is a commonly used chemotherapy agent exerts undesired cardiac toxicity. Mitochondrial dysfunction is thought to be one of potentially important mechanisms of 5-FU- induced cardiotoxicity. α-ketoglutarate dehydrogenase (α-KGDHC) is the key regulatory enzyme of TCA cycle. The complex consists of multiple copies of three catalytic subunits: α-ketoglutarate dehydrogenase (E1), dihydrolipoamide succinyltransferase (E2) and dihydrolipoamide dehydrogenase (E3). α-KGDHC together with branched chain α-ketoacid dehydrogenase (BCKDH) and pyruvate dehydrogenase (PDH), are the members of 2-oxoacid dehydrogenases family that share some structural and functional similarities. Recently, it has been found that 5-FU stimulates BCKDH in rat's cardiac muscle. Therefore, we hypothesize that 5-FU modifies α-KGDHC activity and affects cardiac muscle metabolism. The aim of this study was to determine the effect of 5-FU on α-KGDHC activity and protein levels of E1 and E2 subunits of the complex in rat's cardiac muscle. Wistar male rats were administered with 4 doses of 5-FU, 150 mg/ kg b.wt. each (study group) or 0.3% methylcellulose (control group). α-KGDHC activity was assayed spectrophotometrically. The E1 and E2 proteins levels were quantified by Western blot. 5-FU administration resulted in stimulation of myocardial α-KGDHC activity in rats. In addition, E2 protein level increased in response to 5-FU treatment, while the E1 protein level remained unchanged. Up-regulation of α-KGDHC appears to result from change in E2 subunit protein level. However, the effect of 5-FU on factors modifying α-KGDHC activity at post-translational level cannot be excluded.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Complejo Cetoglutarato Deshidrogenasa
/
Dihidrolipoamida Deshidrogenasa
Límite:
Animals
Idioma:
En
Revista:
Folia Med Cracov
Año:
2022
Tipo del documento:
Article
País de afiliación:
Polonia
Pais de publicación:
Polonia