Your browser doesn't support javascript.
loading
Using logical constraints to validate statistical information about disease outbreaks in collaborative knowledge graphs: the case of COVID-19 epidemiology in Wikidata.
Turki, Houcemeddine; Jemielniak, Dariusz; Hadj Taieb, Mohamed A; Labra Gayo, Jose E; Ben Aouicha, Mohamed; Banat, Mus'ab; Shafee, Thomas; Prud'hommeaux, Eric; Lubiana, Tiago; Das, Diptanshu; Mietchen, Daniel.
Afiliación
  • Turki H; Data Engineering and Semantics Research Unit, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia.
  • Jemielniak D; Department of Management in Networked and Digital Societies, Kozminski University, Warsaw, Masovia, Poland.
  • Hadj Taieb MA; Data Engineering and Semantics Research Unit, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia.
  • Labra Gayo JE; Web Semantics Oviedo (WESO) Research Group, University of Oviedo, Oviedo, Asturias, Spain.
  • Ben Aouicha M; Data Engineering and Semantics Research Unit, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia.
  • Banat M; Faculty of Medicine, Hashemite University, Zarqa, Jordan.
  • Shafee T; La Trobe University, Melbourne, Victoria, Australia.
  • Prud'hommeaux E; Swinburne University of Technology, Melbourne, Victoria, Australia.
  • Lubiana T; World Wide Web Consortium, Cambridge, Massachusetts, United States of America.
  • Das D; Computational Systems Biology Laboratory, University of São Paulo, São Paulo, Brazil.
  • Mietchen D; Institute of Child Health (ICH), Kolkata, West Bengal, India.
PeerJ Comput Sci ; 8: e1085, 2022.
Article en En | MEDLINE | ID: mdl-36262159
Urgent global research demands real-time dissemination of precise data. Wikidata, a collaborative and openly licensed knowledge graph available in RDF format, provides an ideal forum for exchanging structured data that can be verified and consolidated using validation schemas and bot edits. In this research article, we catalog an automatable task set necessary to assess and validate the portion of Wikidata relating to the COVID-19 epidemiology. These tasks assess statistical data and are implemented in SPARQL, a query language for semantic databases. We demonstrate the efficiency of our methods for evaluating structured non-relational information on COVID-19 in Wikidata, and its applicability in collaborative ontologies and knowledge graphs more broadly. We show the advantages and limitations of our proposed approach by comparing it to the features of other methods for the validation of linked web data as revealed by previous research.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Screening_studies Idioma: En Revista: PeerJ Comput Sci Año: 2022 Tipo del documento: Article País de afiliación: Túnez Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Screening_studies Idioma: En Revista: PeerJ Comput Sci Año: 2022 Tipo del documento: Article País de afiliación: Túnez Pais de publicación: Estados Unidos