Loss of tetraspanin-7 expression reduces pancreatic ß-cell exocytosis Ca2+ sensitivity but has limited effect on systemic metabolism.
Diabet Med
; 39(12): e14984, 2022 12.
Article
en En
| MEDLINE
| ID: mdl-36264270
BACKGROUND: Tetraspanin-7 (Tspan7) is an islet autoantigen involved in autoimmune type 1 diabetes and known to regulate ß-cell L-type Ca2+ channel activity. However, the role of Tspan7 in pancreatic ß-cell function is not yet fully understood. METHODS: Histological analyses were conducted using immunostaining. Whole-body metabolism was tested using glucose tolerance test. Islet hormone secretion was quantified using static batch incubation or dynamic perifusion. ß-cell transmembrane currents, electrical activity and exocytosis were measured using whole-cell patch-clamping and capacitance measurements. Gene expression was studied using mRNA-sequencing and quantitative PCR. RESULTS: Tspan7 is expressed in insulin-containing granules of pancreatic ß-cells and glucagon-producing α-cells. Tspan7 knockout mice (Tspan7y/- mouse) exhibit reduced body weight and ad libitum plasma glucose but normal glucose tolerance. Tspan7y/- islets have normal insulin content and glucose- or tolbutamide-stimulated insulin secretion. Depolarisation-triggered Ca2+ current was enhanced in Tspan7y/- ß-cells, but ß-cell electrical activity and depolarisation-evoked exocytosis were unchanged suggesting that exocytosis was less sensitive to Ca2+ . TSPAN7 knockdown (KD) in human pseudo-islets led to a significant reduction in insulin secretion stimulated by 20 mM K+ . Transcriptomic analyses show that TSPAN7 KD in human pseudo-islets correlated with changes in genes involved in hormone secretion, apoptosis and ER stress. Consistent with rodent ß-cells, exocytotic Ca2+ sensitivity was reduced in a human ß-cell line (EndoC-ßH1) following Tspan7 KD. CONCLUSION: Tspan7 is involved in the regulation of Ca2+ -dependent exocytosis in ß-cells. Its function is more significant in human ß-cells than their rodent counterparts.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Islotes Pancreáticos
/
Células Secretoras de Insulina
Tipo de estudio:
Diagnostic_studies
Límite:
Animals
/
Humans
Idioma:
En
Revista:
Diabet Med
Asunto de la revista:
ENDOCRINOLOGIA
Año:
2022
Tipo del documento:
Article
Pais de publicación:
Reino Unido