Your browser doesn't support javascript.
loading
Integrated analysis of miRNAs and mRNA profiling reveals the potential roles of miRNAs in sheep hair follicle development.
He, Junmin; Huang, Xixia; Zhao, Bingru; Liu, Guifen; Tian, Yuezhen; Zhang, Guoping; Wei, Chen; Mao, Jingyi; Tian, Kechuan.
Afiliación
  • He J; Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.
  • Huang X; College of Animal Science, Xinjiang Agricultural University, Urumqi, China.
  • Zhao B; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
  • Liu G; Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.
  • Tian Y; Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China.
  • Zhang G; Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.
  • Wei C; Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.
  • Mao J; College of Animal Science, Xinjiang Agricultural University, Urumqi, China.
  • Tian K; Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China. tiankechuan@163.com.
BMC Genomics ; 23(1): 722, 2022 Oct 22.
Article en En | MEDLINE | ID: mdl-36273119
ABSTRACT

BACKGROUND:

Merino sheep exhibit high wool production and excellent wool quality. The fleece of Merino sheep is predominantly composed of wool fibers grown from hair follicles (HFs). The HF is a complex biological system involved in a dynamic process governed by gene regulation, and gene expression is regulated by microRNAs (miRNAs). miRNA inhibits posttranscriptional gene expression by specifically binding to target messenger RNA (mRNA) and plays an important role in regulating gene expression, the cell cycle and biological development sequences. The purpose of this study was to examine mRNA and miRNA binding to identify key miRNAs and target genes related to HF development. This will provide new and important insights into fundamental mechanisms that regulate cellular activity and cell fate decisions within and outside of the skin.

RESULTS:

We analyzed miRNA data in skin tissues collected from 18 Merino sheep on four embryonic days (E65, E85, E105 and E135) and two postnatal days (D7 and D30) and identified 87 differentially expressed miRNAs (DE-miRNAs). These six stages were further divided into two longer developmental stages based on heatmap cluster analysis, and the results showed that DE-mRNAs in Stage A were closely related to HF morphogenesis. A coanalysis of Stage A DE-mRNAs and DE-miRNAs revealed that 9 DE-miRNAs and 17 DE-mRNAs presented targeting relationships in Stage A. We found that miR-23b and miR-133 could target and regulate ACVR1B and WNT10A. In dermal fibroblasts, the overexpression of miR-133 significantly reduced the mRNA and protein expression levels of ACVR1B. The overexpression of miR-23b significantly reduced the mRNA and protein expression levels of WNT10A.

CONCLUSION:

This study provides a new reference for understanding the molecular basis of HF development and lays a foundation for further improving sheep HF breeding. miRNAs and target genes related to hair follicular development were found, which provided a theoretical basis for molecular breeding for the culture of fine-wool sheep.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Perfilación de la Expresión Génica / MicroARNs Límite: Animals Idioma: En Revista: BMC Genomics Asunto de la revista: GENETICA Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Perfilación de la Expresión Génica / MicroARNs Límite: Animals Idioma: En Revista: BMC Genomics Asunto de la revista: GENETICA Año: 2022 Tipo del documento: Article País de afiliación: China