Your browser doesn't support javascript.
loading
Radiomics as an emerging tool in the management of brain metastases.
Nowakowski, Alexander; Lahijanian, Zubin; Panet-Raymond, Valerie; Siegel, Peter M; Petrecca, Kevin; Maleki, Farhad; Dankner, Matthew.
Afiliación
  • Nowakowski A; Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Québec, Canada.
  • Lahijanian Z; McGill University Health Centre, Department of Diagnostic Radiology, McGill University, Montreal, Québec, Canada.
  • Panet-Raymond V; McGill University Health Centre, Department of Diagnostic Radiology, McGill University, Montreal, Québec, Canada.
  • Siegel PM; Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Québec, Canada.
  • Petrecca K; Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada.
  • Maleki F; Department of Computer Science, University of Calgary, Calgary, Alberta, Canada.
  • Dankner M; Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Québec, Canada.
Neurooncol Adv ; 4(1): vdac141, 2022.
Article en En | MEDLINE | ID: mdl-36284932
Brain metastases (BM) are associated with significant morbidity and mortality in patients with advanced cancer. Despite significant advances in surgical, radiation, and systemic therapy in recent years, the median overall survival of patients with BM is less than 1 year. The acquisition of medical images, such as computed tomography (CT) and magnetic resonance imaging (MRI), is critical for the diagnosis and stratification of patients to appropriate treatments. Radiomic analyses have the potential to improve the standard of care for patients with BM by applying artificial intelligence (AI) with already acquired medical images to predict clinical outcomes and direct the personalized care of BM patients. Herein, we outline the existing literature applying radiomics for the clinical management of BM. This includes predicting patient response to radiotherapy and identifying radiation necrosis, performing virtual biopsies to predict tumor mutation status, and determining the cancer of origin in brain tumors identified via imaging. With further development, radiomics has the potential to aid in BM patient stratification while circumventing the need for invasive tissue sampling, particularly for patients not eligible for surgical resection.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Neurooncol Adv Año: 2022 Tipo del documento: Article País de afiliación: Canadá Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Neurooncol Adv Año: 2022 Tipo del documento: Article País de afiliación: Canadá Pais de publicación: Reino Unido