Your browser doesn't support javascript.
loading
Isotropic reconstruction for electron tomography with deep learning.
Liu, Yun-Tao; Zhang, Heng; Wang, Hui; Tao, Chang-Lu; Bi, Guo-Qiang; Zhou, Z Hong.
Afiliación
  • Liu YT; Center for Integrative Imaging, Hefei National Research Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China.
  • Zhang H; California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA.
  • Wang H; Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA, 90095, USA.
  • Tao CL; Center for Integrative Imaging, Hefei National Research Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China.
  • Bi GQ; Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China.
  • Zhou ZH; California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA.
Nat Commun ; 13(1): 6482, 2022 10 29.
Article en En | MEDLINE | ID: mdl-36309499
ABSTRACT
Cryogenic electron tomography (cryoET) allows visualization of cellular structures in situ. However, anisotropic resolution arising from the intrinsic "missing-wedge" problem has presented major challenges in visualization and interpretation of tomograms. Here, we have developed IsoNet, a deep learning-based software package that iteratively reconstructs the missing-wedge information and increases signal-to-noise ratio, using the knowledge learned from raw tomograms. Without the need for sub-tomogram averaging, IsoNet generates tomograms with significantly reduced resolution anisotropy. Applications of IsoNet to three representative types of cryoET data demonstrate greatly improved structural interpretability resolving lattice defects in immature HIV particles, establishing architecture of the paraflagellar rod in Eukaryotic flagella, and identifying heptagon-containing clathrin cages inside a neuronal synapse of cultured cells. Therefore, by overcoming two fundamental limitations of cryoET, IsoNet enables functional interpretation of cellular tomograms without sub-tomogram averaging. Its application to high-resolution cellular tomograms should also help identify differently oriented complexes of the same kind for sub-tomogram averaging.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Tomografía con Microscopio Electrónico / Aprendizaje Profundo Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Tomografía con Microscopio Electrónico / Aprendizaje Profundo Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2022 Tipo del documento: Article País de afiliación: China