Assessment of Surface and Build-up Doses for a 6 MV Photon Beam using Parallel Plate Chamber, EBT3 Gafchromic Films, and PRIMO Monte Carlo Simulation Code.
J Biomed Phys Eng
; 12(5): 455-464, 2022 Oct.
Article
en En
| MEDLINE
| ID: mdl-36313413
Background: Accurate assessment of surface and build-up doses has a key role in radiotherapy, especially for the superficial lesions with uncertainties involved while performing measurements in the build-up region. Objective: This study aimed to assess surface and build-up doses for 6 MV photon beam from linear accelerator using parallel plate ionization chamber, EBT3 Gafchromic films, and PRIMO Monte Carlo (MC) simulation code. Material and Methods: In this experimental study, parallel plate chamber (PPC05) and EBT3 Gafchromic films were used to measure doses in a build-up region for 6 MV beam from the linear accelerator for different field sizes at various depths ranging from 0 to 2 cm from the surface with 100 cm source to surface distance (SSD) in a solid water phantom. Measured results were compared with Monte Carlo simulated results using PENELOPE-based PRIMO simulation code for the same setup conditions. Effect of gantry angle incidence and SSD were also analyzed for depth doses at the surface and build-up regions using PPC05 ion chamber and EBT3 Gafchromic films. Results: Doses measured at the surface were 14.78%, 19.87%, 25.83%, and 31.54% for field sizes of 5×5, 10×10, 15×15, and 20×20 cm2, respectively for a 6 MV photon beam with a parallel plate chamber and 14.20%, 19.14%, 25.149%, and 30.90%, respectively for EBT3 Gafchromic films. Both measurement sets were in good agreement with corresponding simulated results from the PRIMO MC simulation code; doses increase with the increase in field sizes. Conclusion: Good agreement was observed between the measured depth doses using parallel plate ionization chamber, EBT3 Gafchromic films, and the simulated depth doses using PRIMO Monte Carlo simulation code.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
J Biomed Phys Eng
Año:
2022
Tipo del documento:
Article
País de afiliación:
India
Pais de publicación:
Irán