Your browser doesn't support javascript.
loading
Chromophore hydrolysis and release from photoactivated rhodopsin in native membranes.
Hong, John D; Salom, David; Kochman, Michal Andrzej; Kubas, Adam; Kiser, Philip D; Palczewski, Krzysztof.
Afiliación
  • Hong JD; Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA 92697.
  • Salom D; Department of Chemistry, University of California, Irvine, CA 92697.
  • Kochman MA; Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA 92697.
  • Kubas A; Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland.
  • Kiser PD; Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland.
  • Palczewski K; Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA 92697.
Proc Natl Acad Sci U S A ; 119(45): e2213911119, 2022 Nov 08.
Article en En | MEDLINE | ID: mdl-36322748
ABSTRACT
For sustained vision, photoactivated rhodopsin (Rho*) must undergo hydrolysis and release of all-trans-retinal, producing substrate for the visual cycle and apo-opsin available for regeneration with 11-cis-retinal. The kinetics of this hydrolysis has yet to be described for rhodopsin in its native membrane environment. We developed a method consisting of simultaneous denaturation and chromophore trapping by isopropanol/borohydride, followed by exhaustive protein digestion, complete extraction, and liquid chromatography-mass spectrometry. Using our method, we tracked Rho* hydrolysis, the subsequent formation of N-retinylidene-phosphatidylethanolamine (N-ret-PE) adducts with the released all-trans-retinal, and the reduction of all-trans-retinal to all-trans-retinol. We found that hydrolysis occurred faster in native membranes than in detergent micelles typically used to study membrane proteins. The activation energy of the hydrolysis in native membranes was determined to be 17.7 ± 2.4 kcal/mol. Our data support the interpretation that metarhodopsin II, the signaling state of rhodopsin, is the primary species undergoing hydrolysis and release of its all-trans-retinal. In the absence of NADPH, free all-trans-retinal reacts with phosphatidylethanolamine (PE), forming a substantial amount of N-ret-PE (∼40% of total all-trans-retinal at physiological pH), at a rate that is an order of magnitude faster than Rho* hydrolysis. However, N-ret-PE formation was highly attenuated by NADPH-dependent reduction of all-trans-retinal to all-trans-retinol. Neither N-ret-PE formation nor all-trans-retinal reduction affected the rate of hydrolysis of Rho*. Our study provides a comprehensive picture of the hydrolysis of Rho* and the release of all-trans-retinal and its reentry into the visual cycle, a process in which alteration can lead to severe retinopathies.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Retinaldehído / Rodopsina Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2022 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Retinaldehído / Rodopsina Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2022 Tipo del documento: Article