Your browser doesn't support javascript.
loading
High Electrochemiluminescence from Ru(bpy)3 2+ Embedded Metal-Organic Frameworks to Visualize Single Molecule Movement at the Cellular Membrane.
Li, Binxiao; Huang, Xuedong; Lu, Yanwei; Fan, Zihui; Li, Bin; Jiang, Dechen; Sojic, Neso; Liu, Baohong.
Afiliación
  • Li B; Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China.
  • Huang X; Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China.
  • Lu Y; Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China.
  • Fan Z; Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China.
  • Li B; Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China.
  • Jiang D; State Key Laboratory of Analytical Chemistry for Life and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, China.
  • Sojic N; Bordeaux INP, Institute of Molecular Science (ISM), and CNRS UMR 5255, University of Bordeaux, Pessac, 33607, France.
  • Liu B; Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China.
Adv Sci (Weinh) ; 9(35): e2204715, 2022 12.
Article en En | MEDLINE | ID: mdl-36328787
ABSTRACT
Direct imaging of single-molecule and its movement is of fundamental importance in biology, but challenging. Herein, aided by the nanoconfinement effect and resultant high reaction activity within metal-organic frameworks (MOFs), the designed Ru(bpy)3 2+ embedded MOF complex (RuMOFs) exhibits bright electrochemiluminescence (ECL) emission permitting high-quality imaging of ECL events at single molecule level. By labeling individual proteins of living cells with single RuMOFs, the distribution of membrane tyrosine-protein-kinase-like7 (PTK7) proteins at low-expressing cells is imaged via ECL. More importantly, the efficient capture of ECL photons generated inside the MOFs results in a stable ECL emission up to 1 h, allowing the in operando visualization of protein movements at the cellular membrane. As compared with the fluorescence observation, near-zero ECL background surrounding the target protein with the ECL emitter gives a better contrast for the dynamic imaging of discrete protein movement. This achievement of single molecule ECL dynamic imaging using RuMOFs will provide a more effective nanoemitter to observe the distribution and motion of individual proteins at living cells.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Estructuras Metalorgánicas Idioma: En Revista: Adv Sci (Weinh) Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Estructuras Metalorgánicas Idioma: En Revista: Adv Sci (Weinh) Año: 2022 Tipo del documento: Article País de afiliación: China