Your browser doesn't support javascript.
loading
Bacterial Dehydrogenases Facilitate Oxidative Inactivation and Bioremediation of Chloramphenicol.
Zhang, Lei; Toplak, Marina; Saleem-Batcha, Raspudin; Höing, Lars; Jakob, Roman; Jehmlich, Nico; von Bergen, Martin; Maier, Timm; Teufel, Robin.
Afiliación
  • Zhang L; Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany.
  • Toplak M; Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany.
  • Saleem-Batcha R; Institute of Pharmaceutical Sciences, University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany.
  • Höing L; Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.
  • Jakob R; Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland.
  • Jehmlich N; Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research UFZ GmbH, Leipzig, Germany.
  • von Bergen M; German Centre for Integrative Biodiversity Research, (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany.
  • Maier T; University of Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Brüderstraße 34, 04103, Leipzig, Germany.
  • Teufel R; Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research UFZ GmbH, Leipzig, Germany.
Chembiochem ; 24(2): e202200632, 2023 01 17.
Article en En | MEDLINE | ID: mdl-36353978
ABSTRACT
Antimicrobial resistance represents a major threat to human health and knowledge of the underlying mechanisms is therefore vital. Here, we report the discovery and characterization of oxidoreductases that inactivate the broad-spectrum antibiotic chloramphenicol via dual oxidation of the C3-hydroxyl group. Accordingly, chloramphenicol oxidation either depends on standalone glucose-methanol-choline (GMC)-type flavoenzymes, or on additional aldehyde dehydrogenases that boost overall turnover. These enzymes also enable the inactivation of the chloramphenicol analogues thiamphenicol and azidamfenicol, but not of the C3-fluorinated florfenicol. Notably, distinct isofunctional enzymes can be found in Gram-positive (e. g., Streptomyces sp.) and Gram-negative (e. g., Sphingobium sp.) bacteria, which presumably evolved their selectivity for chloramphenicol independently based on phylogenetic analyses. Mechanistic and structural studies provide further insights into the catalytic mechanisms of these biotechnologically interesting enzymes, which, in sum, are both a curse and a blessing by contributing to the spread of antibiotic resistance as well as to the bioremediation of chloramphenicol.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Cloranfenicol / Antibacterianos Límite: Humans Idioma: En Revista: Chembiochem Asunto de la revista: BIOQUIMICA Año: 2023 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Cloranfenicol / Antibacterianos Límite: Humans Idioma: En Revista: Chembiochem Asunto de la revista: BIOQUIMICA Año: 2023 Tipo del documento: Article País de afiliación: Alemania