Your browser doesn't support javascript.
loading
pH-Responsive PVA-Based Nanofibers Containing GO Modified with Ag Nanoparticles: Physico-Chemical Characterization, Wound Dressing, and Drug Delivery.
Rahmani, Erfan; Pourmadadi, Mehrab; Zandi, Nayereh; Rahdar, Abbas; Baino, Francesco.
Afiliación
  • Rahmani E; School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran.
  • Pourmadadi M; Department of Biomedical Engineering, University of Delaware, Newark, DE 19713, USA.
  • Zandi N; Protein Research Center, Shahid Beheshti University, Tehran 1983963113, GC, Iran.
  • Rahdar A; Department of Medical Laboratory Science, School of Medicine, Qazvin University of Medical Sciences, Qazvin 34, Iran.
  • Baino F; Department of Physics, Faculty of Science, University of Zabol, Zabol 98613-35856, Iran.
Micromachines (Basel) ; 13(11)2022 Oct 28.
Article en En | MEDLINE | ID: mdl-36363869
ABSTRACT
Site-specific drug delivery and carrying repairing agents for wound healing purposes can be achieved using the intertwined three-dimensional structure of nanofibers. This study aimed to optimize and fabricate poly (vinyl alcohol) (PVA)-graphene oxide (GO)-silver (Ag) nanofibers containing curcumin (CUR) using the electrospinning method for potential wound healing applications. Fourier Transform Infrared (FTIR) spectrophotometry, X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Dynamic Light Scattering (DLS), and zeta potential were used to characterize the nanostructures. The mechanical properties of the nanostructures were subsequently examined by tensile strength and elongation test. As shown by MIC analysis of E. coli and S. aureus bacteria, the fabricated nanofibers had superior inhibitory effects on the bacteria growth. Ag nanoparticles incorporation into the nanofibers resulted in increased loading and encapsulation efficiencies from 21% to 56% and from 61% to 86%, respectively. CUR release from PVA/GO-Ag-CUR nanofiber at pH 7.4 was prevented, while the acidic microenvironment (pH 5.4) increased the release of CUR from PVA/GO-Ag-CUR nanofiber, corroborating the pH-sensitivity of the nanofibers. Using the in vitro wound healing test on NIH 3T3 fibroblast cells, we observed accelerated growth and proliferation of cells cultured on PVA/GO-Ag-CUR nanofibers.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Micromachines (Basel) Año: 2022 Tipo del documento: Article País de afiliación: Irán

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Micromachines (Basel) Año: 2022 Tipo del documento: Article País de afiliación: Irán