Your browser doesn't support javascript.
loading
Label-free proteome quantification and evaluation.
Fu, Jianbo; Yang, Qingxia; Luo, Yongchao; Zhang, Song; Tang, Jing; Zhang, Ying; Zhang, Hongning; Xu, Hanxiang; Zhu, Feng.
Afiliación
  • Fu J; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
  • Yang Q; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
  • Luo Y; Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
  • Zhang S; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
  • Tang J; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
  • Zhang Y; Department of Bioinformatics, Chongqing Medical University, Chongqing 400016, China.
  • Zhang H; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
  • Xu H; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
  • Zhu F; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
Brief Bioinform ; 24(1)2023 01 19.
Article en En | MEDLINE | ID: mdl-36403090
The label-free quantification (LFQ) has emerged as an exceptional technique in proteomics owing to its broad proteome coverage, great dynamic ranges and enhanced analytical reproducibility. Due to the extreme difficulty lying in an in-depth quantification, the LFQ chains incorporating a variety of transformation, pretreatment and imputation methods are required and constructed. However, it remains challenging to determine the well-performing chain, owing to its strong dependence on the studied data and the diverse possibility of integrated chains. In this study, an R package EVALFQ was therefore constructed to enable a performance evaluation on >3000 LFQ chains. This package is unique in (a) automatically evaluating the performance using multiple criteria, (b) exploring the quantification accuracy based on spiking proteins and (c) discovering the well-performing chains by comprehensive assessment. All in all, because of its superiority in assessing from multiple perspectives and scanning among over 3000 chains, this package is expected to attract broad interests from the fields of proteomic quantification. The package is available at https://github.com/idrblab/EVALFQ.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteoma / Proteómica Idioma: En Revista: Brief Bioinform Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteoma / Proteómica Idioma: En Revista: Brief Bioinform Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido