Your browser doesn't support javascript.
loading
Assessment of Seasonal Stochastic Local Models for Glucose Prediction without Meal Size Information under Free-Living Conditions.
Prendin, Francesco; Díez, José-Luis; Del Favero, Simone; Sparacino, Giovanni; Facchinetti, Andrea; Bondia, Jorge.
Afiliación
  • Prendin F; Department of Information Engineering (DEI), University of Padova, Via G. Gradenigo 6/B, 35131 Padova, Italy.
  • Díez JL; Instituto Universitario de Automática e Informática Industrial, Universitat Politècnica de València, Camino de Vera, s/n, 46022 València, Spain.
  • Del Favero S; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain.
  • Sparacino G; Department of Information Engineering (DEI), University of Padova, Via G. Gradenigo 6/B, 35131 Padova, Italy.
  • Facchinetti A; Department of Information Engineering (DEI), University of Padova, Via G. Gradenigo 6/B, 35131 Padova, Italy.
  • Bondia J; Department of Information Engineering (DEI), University of Padova, Via G. Gradenigo 6/B, 35131 Padova, Italy.
Sensors (Basel) ; 22(22)2022 Nov 10.
Article en En | MEDLINE | ID: mdl-36433278
Accurate blood glucose (BG) forecasting is key in diabetes management, as it allows preventive actions to mitigate harmful hypoglycemic/hyperglycemic episodes. Considering the encouraging results obtained by seasonal stochastic models in proof-of-concept studies, this work assesses the methodology in two datasets (open-loop and closed-loop) recorded in free-living conditions. First, similar postprandial glycemic profiles are grouped together with fuzzy C-means clustering. Then, a seasonal stochastic model is identified for each cluster. Finally, real-time BG forecasting is performed by weighting each model's prediction. The proposed methodology (named C-SARIMA) is compared to other linear and nonlinear black-box methods: autoregressive integrated moving average (ARIMA), its variant with input (ARIMAX), a feed-forward neural network (NN), and its modified version (NN-X) fed by BG, insulin, and carbohydrates (timing and dosing) information for several prediction horizons (PHs). In the open-loop dataset, C-SARIMA grants a median root-mean-squared error (RMSE) of 20.13 mg/dL (PH = 30) and 27.23 mg/dL (PH = 45), not significantly different from ARIMA and NN. Over a longer PH, C-SARIMA achieves an RMSE = 31.96 mg/dL (PH = 60) and RMSE = 33.91 mg/dL (PH = 75), significantly outperforming the ARIMA and NN, without significant differences from the ARIMAX for PH ≥ 45 and the NN-X for PH ≥ 60. Similar results hold on the closed-loop dataset: for PH = 30 and 45 min, the C-SARIMA achieves an RMSE = 21.63 mg/dL and RMSE = 29.67 mg/dL, not significantly different from the ARIMA and NN. On longer PH, the C-SARIMA outperforms the ARIMA for PH > 45 and the NN for PH > 60 without significant differences from the ARIMAX for PH ≥ 45. Although using less input information, the C-SARIMA achieves similar performance to other prediction methods such as the ARIMAX and NN-X and outperforming the CGM-only approaches on PH > 45min.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Glucosa / Hipoglucemia Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Sensors (Basel) Año: 2022 Tipo del documento: Article País de afiliación: Italia Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Glucosa / Hipoglucemia Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Sensors (Basel) Año: 2022 Tipo del documento: Article País de afiliación: Italia Pais de publicación: Suiza