Your browser doesn't support javascript.
loading
Manipulating wettability of catalytic surface for improving ammonia production from electrochemical nitrogen reduction.
Kim, Dohun; Alam, Khurshed; Han, Mi-Kyung; Surendran, Subramani; Lim, Jaehyoung; Young Kim, Joon; Jun Moon, Dae; Jeong, Geonwoo; Gon Kim, Myeong; Kwon, Gibum; Yang, Sangsun; Gon Kang, Tae; Kyu Kim, Jung; Yeop Jung, Seon; Cho, Hoonsung; Sim, Uk.
Afiliación
  • Kim D; Department of Materials Science & Engineering, Chonnam National University, Gwangju 61186, South Korea.
  • Alam K; Department of Materials Science & Engineering, Chonnam National University, Gwangju 61186, South Korea.
  • Han MK; Department of Materials Science & Engineering, Chonnam National University, Gwangju 61186, South Korea.
  • Surendran S; Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), 200 Hyeoksin-ro, Naju, Jeonnam 58330, Rep. of Korea.
  • Lim J; Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), 200 Hyeoksin-ro, Naju, Jeonnam 58330, Rep. of Korea.
  • Young Kim J; Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), 200 Hyeoksin-ro, Naju, Jeonnam 58330, Rep. of Korea; Research Institute, NEEL Sciences, INC., 58326 Jeollanamdo, South Korea.
  • Jun Moon D; Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), 200 Hyeoksin-ro, Naju, Jeonnam 58330, Rep. of Korea; Research Institute, NEEL Sciences, INC., 58326 Jeollanamdo, South Korea.
  • Jeong G; Department of Materials Science & Engineering, Chonnam National University, Gwangju 61186, South Korea.
  • Gon Kim M; Department of Materials Science & Engineering, Chonnam National University, Gwangju 61186, South Korea.
  • Kwon G; Department of Mechanical Engineering, University of Kansas, Lawrence, KS 66045, United States.
  • Yang S; Powder and Ceramics Division, Korea Institute of Materials Science, Changwon 51508, South Korea.
  • Gon Kang T; School of Aerospace and Mechanical Engineering, Korea Aerospace University, Goyang-si, Gyeonggi-do 10540, South Korea.
  • Kyu Kim J; School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Rep. of Korea.
  • Yeop Jung S; Department of Chemical Engineering, Dankook University, Yongin-si, Gyeonggi-do 16890, South Korea. Electronic address: seon27@dankook.ac.kr.
  • Cho H; Department of Materials Science & Engineering, Chonnam National University, Gwangju 61186, South Korea. Electronic address: cho.hoonsung@jnu.ac.kr.
  • Sim U; Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), 200 Hyeoksin-ro, Naju, Jeonnam 58330, Rep. of Korea; Research Institute, NEEL Sciences, INC., 58326 Jeollanamdo, South Korea; Center for Energy Storage System, Chonnam National University, Gwangju 61186, South Kor
J Colloid Interface Sci ; 633: 53-59, 2023 Mar.
Article en En | MEDLINE | ID: mdl-36434935
ABSTRACT
An electrochemical nitrogen reduction reaction (ENRR) is considered a promising alternative for the traditional Haber-Bosch process. In this study, we present a method for improving the ENRR by controlling the wettability of the catalyst surface, suppressing the hydrogen evolution reaction (HER) while facilitating N2 adsorption. Reduced-graphene oxide (rGO) with a hydrophobic surface property and a contact angle (C.A.) of 59° was synthesized through a high-density atmospheric plasma deposition. Two other hydrophilic and superhydrophobic surfaces with a C.A. of 15° and 150° were developed through additional argon plasma and heat treatment of as-deposited rGO, respectively. The ENRR results showed that the ammonia yield and Faradaic efficiency tended to increase with increasing hydrophobicity. Electrochemical measurements reveal that superhydrophobic rGO achieves a higher Faradaic efficiency (5.73 %) at -0.1 V (vs RHE) and a higher NH3 yield (9.77 µg h-1 cm-2) at -0.4 V (vs RHE) in a 0.1 M KOH electrolyte. In addition, the computational fluid dynamics simulation confirmed that the amount of time the N2 gas remains on the surface could increase by improving the hydrophobicity of the catalytic surface. This study inspires the development of the rGO electrocatalyst through surface wettability modification for boosting ammonia electrosynthesis.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Grafito / Amoníaco Idioma: En Revista: J Colloid Interface Sci Año: 2023 Tipo del documento: Article País de afiliación: Corea del Sur Pais de publicación: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Grafito / Amoníaco Idioma: En Revista: J Colloid Interface Sci Año: 2023 Tipo del documento: Article País de afiliación: Corea del Sur Pais de publicación: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA