Your browser doesn't support javascript.
loading
Noncovalent Enzyme Nanogels via a Photocleavable Linkage.
Forsythe, Neil L; Tan, Mikayla F; Vinciguerra, Daniele; Woodford, Jacquelin; Stieg, Adam Z; Maynard, Heather D.
Afiliación
  • Forsythe NL; Department of Chemistry and Biochemistry, University of California, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States.
  • Tan MF; Department of Chemistry and Biochemistry, University of California, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States.
  • Vinciguerra D; California NanoSystems Institute, 570 Westwood Plaza Building 114, Los Angeles, California 90095, United States.
  • Woodford J; Department of Chemistry and Biochemistry, University of California, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States.
  • Stieg AZ; California NanoSystems Institute, 570 Westwood Plaza Building 114, Los Angeles, California 90095, United States.
  • Maynard HD; Department of Chemistry and Biochemistry, University of California, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States.
Macromolecules ; 55(22): 9925-9933, 2022 Nov 22.
Article en En | MEDLINE | ID: mdl-36438597
ABSTRACT
Enzyme nanogels (ENGs) offer a convenient method to protect therapeutic proteins from in vivo stressors. Current methodologies to prepare ENGs rely on either covalent modification of surface residues or the noncovalent assembly of monomers at the protein surface. In this study, we report a new method for the preparation of noncovalent ENGs that utilizes a heterobifunctional, photocleavable monomer as a hybrid approach. Initial covalent modification with this monomer established a polymerizable handle at the protein surface, followed by radical polymerization with poly(ethylene glycol) methacrylate monomer and ethylene glycol dimethacrylate crosslinker in solution. Final photoirradiation cleaved the linkage between the polymer and protein to afford the noncovalent ENGs. The enzyme phenylalanine ammonia lyase (PAL) was utilized as a model protein yielding well-defined nanogels 80 nm in size by dynamic light scattering (DLS) and 76 nm by atomic force microscopy. The stability of PAL after exposure to trypsin or low pH was assessed and was found to be more stable in the noncovalent nanogel compared to PAL alone. This approach may be useful for the stabilization of active enzymes.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Macromolecules Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Macromolecules Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos