TGFß pathway is required for viable gestation of Fanconi anemia embryos.
PLoS Genet
; 18(11): e1010459, 2022 11.
Article
en En
| MEDLINE
| ID: mdl-36441774
Overexpression of the TGFß pathway impairs the proliferation of the hematopoietic stem and progenitor cells (HSPCs) pool in Fanconi anemia (FA). TGFß promotes the expression of NHEJ genes, known to function in a low-fidelity DNA repair pathway, and pharmacological inhibition of TGFß signaling rescues FA HSPCs. Here, we demonstrate that genetic disruption of Smad3, a transducer of the canonical TGFß pathway, modifies the phenotype of FA mouse models deficient for Fancd2. We observed that the TGFß and NHEJ pathway genes are overexpressed during the embryogenesis of Fancd2-/- mice and that the Fancd2-/-Smad3-/- double knockout (DKO) mice undergo high levels of embryonic lethality due to loss of the TGFß-NHEJ axis. Fancd2-deficient embryos acquire extensive genomic instability during gestation which is not reversed by Smad3 inactivation. Strikingly, the few DKO survivors have activated the non-canonical TGFß-ERK pathway, ensuring expression of NHEJ genes during embryogenesis and improved survival. Activation of the TGFß-NHEJ axis was critical for the survival of the few Fancd2-/-Smad3-/- DKO newborn mice but had detrimental consequences for these surviving mice, such as enhanced genomic instability and ineffective hematopoiesis.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Anemia de Fanconi
Límite:
Animals
Idioma:
En
Revista:
PLoS Genet
Asunto de la revista:
GENETICA
Año:
2022
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Estados Unidos