Your browser doesn't support javascript.
loading
Functional Analysis of EspM, an ESX-1-Associated Transcription Factor in Mycobacterium marinum.
Sanchez, Kevin G; Prest, Rebecca J; Nicholson, Kathleen R; Korotkov, Konstantin V; Champion, Patricia A.
Afiliación
  • Sanchez KG; Department of Biological Sciences, University of Notre Damegrid.131063.6, Notre Dame, Indiana, USA.
  • Prest RJ; Eck Institute for Global Health, University of Notre Damegrid.131063.6, Notre Dame, Indiana, USA.
  • Nicholson KR; Department of Biological Sciences, University of Notre Damegrid.131063.6, Notre Dame, Indiana, USA.
  • Korotkov KV; Department of Biological Sciences, University of Notre Damegrid.131063.6, Notre Dame, Indiana, USA.
  • Champion PA; Eck Institute for Global Health, University of Notre Damegrid.131063.6, Notre Dame, Indiana, USA.
J Bacteriol ; 204(12): e0023322, 2022 12 20.
Article en En | MEDLINE | ID: mdl-36448785
Pathogenic mycobacteria use the ESX-1 secretion system to escape the macrophage phagosome and survive infection. We demonstrated that the ESX-1 system is regulated by feedback control in Mycobacterium marinum, a nontuberculous pathogen and model for the human pathogen Mycobacterium tuberculosis. In the presence of a functional ESX-1 system, the WhiB6 transcription factor upregulates expression of ESX-1 substrate genes. In the absence of an assembled ESX-1 system, the conserved transcription factor, EspM, represses whiB6 expression by specifically binding the whiB6 promoter. Together, WhiB6 and EspM fine-tune the levels of ESX-1 substrates in response to the secretion system. The mechanisms underlying control of the ESX-1 system by EspM are unknown. Here, we conduct a structure and function analysis to investigate how EspM is regulated. Using biochemical approaches, we measured the formation of higher-order oligomers of EspM in vitro. We demonstrate that multimerization in vitro can be mediated through multiple domains of the EspM protein. Using a bacterial monohybrid system, we showed that EspM self-associates through multiple domains in Escherichia coli. Using this system, we performed a genetic screen to identify EspM variants that failed to self-associate. The screen yielded four EspM variants of interest, which we tested for activity in M. marinum. Our study revealed that the two helix-turn-helix domains are functionally distinct. Moreover, the helix bundle domain is required for wild-type multimerization in vitro. Our data support models where EspM monomers or hexamers contribute to the regulation of whiB6 expression. IMPORTANCE Pathogenic mycobacteria are bacteria that pose a large burden to human health globally. The ESX-1 secretion system is required for pathogenic mycobacteria to survive within and interact with the host. Proper function of the ESX-1 secretion system is achieved by tightly controlling the expression of secreted virulence factors, in part through transcriptional regulation. Here, we characterize the conserved transcription factor EspM, which regulates the expression of ESX-1 virulence factors. We define domains required for EspM to form multimers and bind DNA. These findings provide an initial characterization an ESX-1 transcription factor and provide insights into its mechanism of action.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas Bacterianas / Mycobacterium marinum / Sistemas de Secreción Tipo VII Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: J Bacteriol Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas Bacterianas / Mycobacterium marinum / Sistemas de Secreción Tipo VII Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: J Bacteriol Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos