Tuning Dimensions of Complexes through Selective In Situ Reaction, Mechanistic Insights into Ni(II)-Catalyzed Br-OH Exchange, Magnetic Properties, and Density Functional Theory Studies.
Inorg Chem
; 61(49): 20159-20168, 2022 Dec 12.
Article
en En
| MEDLINE
| ID: mdl-36450105
Two coordination polymers (CPs), namely, [Mn3(L)2(4,4'-bipy)2(H2O)2]n (1) and [Ni(L1)(1,4-bib)(H2O)]n (2) (H3L = 5-(3-bromo-4-carboxyphenoxy)isophthalic acid, H2L1 = 5-(3-hydroxyphenoxy)isophthalic acid, 4,4'-bpy = 4,4'-bipyridine, and 1,4-bib = 1,4-bis(1H-imidazol-1-yl)benzene), were synthesized under hydrothermal conditions. Most notably, with the help of the bromine atom-inducing effect, ligand transformation was observed in the structure of complex 2, which was scrutinized thoroughly by single crystal X-ray crystallography and X-ray photoelectron spectroscopy (XPS). Strikingly, Ni(II) ions were utilized as both coordinated atoms and as a catalyst for in situ Br-OH exchange of H3L in the process, as a result of which the product would have preferred to form a one-dimensional chain. The same reaction cannot happen in 1, leading to form a two-dimensional structure. Moreover, Ni(II)-catalyzed and magnetic exchange mechanisms were well interpreted using density functional theory (DFT) calculations. Finally, complexes 1-2 show three-dimensional (3D) supramolecular structures because of intermolecular weak interactions (C-Br···π, C-H···π, C-H···O, and π···π stacking) and exhibit utterly different antiferrimagnetic coupling interactions.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Ácidos Ftálicos
Idioma:
En
Revista:
Inorg Chem
Año:
2022
Tipo del documento:
Article
Pais de publicación:
Estados Unidos