Your browser doesn't support javascript.
loading
Optimal confidence intervals for the relative risk and odds ratio.
Wang, Weizhen; Lu, Shuiyun; Xie, Tianfa.
Afiliación
  • Wang W; Faculty of Science, Beijing University of Technology, Beijing, China.
  • Lu S; Department of Mathematics and Statistics, Wright State University, Dayton, Ohio, USA.
  • Xie T; Faculty of Science, Beijing University of Technology, Beijing, China.
Stat Med ; 42(3): 281-296, 2023 02 10.
Article en En | MEDLINE | ID: mdl-36470679
The relative risk and odds ratio are widely used in many fields, including biomedical research, to compare two treatments. Extensive research has been done to infer the two parameters through approximate or exact confidence intervals. However, these intervals may be liberal or conservative. A natural question is whether the intervals can be further improved in maintaining the correct confidence coefficient of an approximate interval or shortening an exact but conservative interval. In this article, when two independent binomials are observed we offer an effort to improve any of the existing intervals by applying the h $$ h $$ -function method. In particular, if the given interval is approximate, then the improved interval is exact; if the given interval is exact, then the improved interval is a subset of the given interval. This method is also applied multiple times to the improved intervals until the final resultant interval cannot be shortened any further. To demonstrate the effectiveness of the method, we use three real datasets to illustrate in detail how several good intervals in practice are improved. Two exact intervals are then recommended for estimating each of the two parameters in different scenarios.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Investigación Biomédica Tipo de estudio: Etiology_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Stat Med Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Investigación Biomédica Tipo de estudio: Etiology_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Stat Med Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido